- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机事件的概率
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 古典概型
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为
.甲、乙、丙三位同学每人购买了一瓶该饮料.
(Ⅰ)求三位同学都没有中奖的概率;
(Ⅱ)求三位同学中至少有两位没有中奖的概率.

(Ⅰ)求三位同学都没有中奖的概率;
(Ⅱ)求三位同学中至少有两位没有中奖的概率.
从装有红球、白球和黑球各2个的口袋内一次取出2个球,给出以下事件:①两球都不是白球;②两球中恰有一个白球;③两球中至少有一个白球.其中与事件“两球都为白球”互斥而非对立的事件是( )
A.①② | B.①③ | C.②③ | D.①②③ |
把黑、红、白
张纸牌分给甲、乙、丙三人,每人一张,则事件“甲分得黑牌”与“乙分得黑牌”是( ).

A.对立事件 | B.必然事件 | C.不可能事件 | D.互斥但不对立事件 |
口袋中有若干红球、黄球与蓝球,从中摸出一个球,摸出红球的概率为0.5,摸出红球或黄球的概率为0.65,则摸出红球或蓝球的概率为___ .
某次抽奖活动共设置一等奖、二等奖两类奖项,已知中一等奖的概率为0.1,中二等奖的概率为0.1,那么本次活动中,中奖的概率为( )
A.0.1 | B.0.2 | C.0.3 | D.0.7 |
某生物实验室研究利用某种微生物来治理污水,每10000个微生物菌种大约能成功培育出成品菌种8000个,根据概率的统计定义,现需要6000个成品菌种,大概要准备______个微生物菌种.
古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米2018石,验得米内夹谷,抽样取米一把,数得270粒内夹谷30粒,则这批米内夹谷约为( )
A.222石 | B.224石 | C.230石 | D.232石 |
某校高三(1)班50名学生参加
体能测试,其中23人成绩为
,其余人成绩都是
或
.从这50名学生中任抽1人,若抽得
的概率是0.4,则抽得
的概率是






A.0.14 | B.0.20 | C.0.40 | D.0.60 |