- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机事件的概率
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 古典概型
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
学校足球赛决赛计划在周三、周四、周五三天中的某一天进行,如果这一天下雨则推迟至后一天,如果这三天都下雨则推迟至下一周,已知这三天下雨的概率均为
,则这周能进行决赛的概率为

A.![]() | B.![]() | C.![]() | D.![]() |
依据黄河济南段8月份的水文观测点的历史统计数据所绘制的频率分布直方图如图(甲)所示:依据济南的地质构造,得到水位与灾害等级的频率分布条形图如图(乙)所示.

(I)以此频率作为概率,试估计黄河济南段在8月份发生I级灾害的概率;
(Ⅱ)黄河济南段某企业,在3月份,若没受1、2级灾害影响,利润为500万元;若受1级灾害影响,则亏损100万元;若受2级灾害影响则亏损1000万元.
现此企业有如下三种应对方案:

试问,如仅从利润考虑,该企业应选择这三种方案中的哪种方案?说明理由.

(I)以此频率作为概率,试估计黄河济南段在8月份发生I级灾害的概率;
(Ⅱ)黄河济南段某企业,在3月份,若没受1、2级灾害影响,利润为500万元;若受1级灾害影响,则亏损100万元;若受2级灾害影响则亏损1000万元.
现此企业有如下三种应对方案:

试问,如仅从利润考虑,该企业应选择这三种方案中的哪种方案?说明理由.
某仪表内装有m个同样的电子元件,有一个损坏时,这个仪表就不能工作.如果在某段时间内每个电子元件损坏的概率是p,则这个仪表不能工作的概率是_____ .
坛子中放有3个白球,2个黑球,从中进行不放回地取球2次,每次取一球,用A1表示第一次取得白球,A2表示第二次取得白球,则A1和A2是( )
A.互斥的事件 | B.相互独立的事件 |
C.对立的事件 | D.不相互独立的事件 |
在最强大脑的舞台上,为了与国际X战队PK,假设某季Dr.魏要从三名擅长速算的选手A1,A2,A3,三名擅长数独的选手B1,B2,B3,两名擅长魔方的选手C1,C2中各选一名组成中国战队.假定两名魔方选手中更擅长盲拧的选手C1已确定入选,而擅长速算与数独的选手入选的可能性相等.
(Ⅰ)求A1被选中的概率;
(Ⅱ)求A1,B1不全被选中的概率.
(Ⅰ)求A1被选中的概率;
(Ⅱ)求A1,B1不全被选中的概率.