- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机事件的概率
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- 对立事件
- 古典概型
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
书架上有10本不同的书,其中语文书4本,数学书3本,英语书3本,现从中取出3本书.求:
( 1 )3本书中至少有1本是数学书的概率;
( 2 )3本书不全是同科目书的概率.
( 1 )3本书中至少有1本是数学书的概率;
( 2 )3本书不全是同科目书的概率.
甲打靶射击,有4发子弹,其中有一发是空弹.
(1)求空弹出现在第一枪的概率;
(2)求空弹出现在前三枪的概率;
(3)如果把空弹换成实弹,甲前三枪在靶上留下三个两两距离分别为3,4,5的弹孔



某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.
(Ⅰ) 求这4位乘客中至少有一名乘客在第2层下电梯的概率;
(Ⅱ) 用
表示4名乘客在第4层下电梯的人数,求
的分布列和数学期望.
(Ⅰ) 求这4位乘客中至少有一名乘客在第2层下电梯的概率;
(Ⅱ) 用


一个盒子里装有4张卡片,分别标有数2,3,4,5;另一个盒子里则装有分别标有3,4,5,6四个数的4张卡片.从两个盒子里各任取一张卡片.
(1)求取出的两张卡片上的数不同的概率;
(2)求取出的两张卡片上的数之和ξ的期望.
(1)求取出的两张卡片上的数不同的概率;
(2)求取出的两张卡片上的数之和ξ的期望.
某家具城进行促销活动,促销方案是:顾客每消费1000元,便可以获得奖券一张,每张奖券中奖的概率为

(I)求家具城恰好返还该顾客现金200元的概率;
(II)求家具城至少返还该顾客现金200元的概率.
在“环境保护低碳生活知识竞赛”第一环节测试中,设有A、B、C三道必答题,分值依次为20分、30分、50分.竞赛规定:若参赛选手连续两道题答题错误,则必答题总分记为零分;否则各题得分之和记为必答题总分已知某选手回答A、B、C三道题正确的概率分别为
、
、
,且回答各题时相互之间没有影响.
(1)若此选手按A、B、C的顺序答题,求其必答题总分不小于80分的概率;
(2)若此选手可以自由选择答题顺序,求其必答题总分为50分的概率.



(1)若此选手按A、B、C的顺序答题,求其必答题总分不小于80分的概率;
(2)若此选手可以自由选择答题顺序,求其必答题总分为50分的概率.
某投资商准备在某市投资甲、乙、丙三个不同的项目,这三个项目投资是否成功相互独立,预测结果如表:

(1)求恰有一个项目投资成功的概率;
(2)求至少有一个项目投资成功的概率

(1)求恰有一个项目投资成功的概率;
(2)求至少有一个项目投资成功的概率
给出下列四个命题:
①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件
②“当x为某一实数时可使
”是不可能事件
③“明天福州要下雨”是必然事件
④李娜在2012年奥运会上,力挫群雄,荣获女子网球单打冠军是随机事件.
其中正确命题的个数是
①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件
②“当x为某一实数时可使

③“明天福州要下雨”是必然事件
④李娜在2012年奥运会上,力挫群雄,荣获女子网球单打冠军是随机事件.
其中正确命题的个数是
A.0 | B.1 | C.2 | D.3 |
一个电路上装有甲、乙两根熔丝,甲熔断的概率为0.85,乙熔断的概率为0.74,甲、乙两根熔丝熔断相互独立,则至少有一根熔断的概率为 ( )
A.0.15×0.26=0.039 | B.1-0.15×0.26=0.961 |
C.0.85×0.74=0.629 | D.1-0.85×0.74=0.371 |