- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 完善列联表
- 列联表分析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在
内,则为合格品,否则为不合格品. 表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.
表1:甲套设备的样本的频数分布表
图1:乙套设备的样本的频率分布直方图

(Ⅰ)将频率视为概率. 若乙套设备生产了5000件产品,则其中的不合格品约有多少件;
(Ⅱ)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;
(Ⅲ)根据表1和图1,对两套设备的优劣进行比较.
附:

.

表1:甲套设备的样本的频数分布表
质量指标值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
频数 | 1 | 5 | 18 | 19 | 6 | 1 |
图1:乙套设备的样本的频率分布直方图

(Ⅰ)将频率视为概率. 若乙套设备生产了5000件产品,则其中的不合格品约有多少件;
(Ⅱ)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;
| 甲套设备 | 乙套设备 | 合计 |
合格品 | | | |
不合格品 | | | |
合计 | | | |
(Ⅲ)根据表1和图1,对两套设备的优劣进行比较.
附:


为了解市民对景区的服务满意度指数,某民调机构随机抽取了40名市民进行了一次问卷调查,得到数据如茎叶图所示,已知满意度指数低于70,满意度弱;反之,则满意度强.

(1)完成下列
列联表;

(2)判断能否有
的把握认为满意度与性别有关?
参考公式:
附表:

(1)完成下列


(2)判断能否有

参考公式:

附表:

在对人们休闲方式的一次调查中,共调查120人,其中女性70人,男性50人.女性中有40人主要的休闲方式是看电视,另外30人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外30人主要的休闲方式是运动.
(1)根据以上数据建立一个2×的列联表:
休闲方式 性别 | 看电视 | 运 动 | 总 计 |
女 性 |
|
|
|
男 性 |
|
|
|
总 计 |
|
|
|
(2)有多大的把握认为休闲方式与性别有关?
参考公式及数据:K2=
①当K2>2.706时,有90%的把握认为A、B有关联;
②当K2>3.841时,有95%的把握认为A、B有关联;
③当K2>6.635时,有99%的把握认为A、B有关联.
某城市随机抽取一年(365天)内100天的空气质量指数
(Air Pollution Index)的监测数据,结果统计如下:
(Ⅰ)若本次抽取的样本数据有30天是在供暖季,其中有7天为重度污染,完成下面
列联表,并判断能否有
的把握认为该市本年空气重度污染与供暖有关?
附:
(Ⅱ)政府要治理污染,决定对某些企业生产进行管控,当
在区间
时企业正常生产;当
在区间
时对企业限产
(即关闭
的产能),当
在区间
时对企业限产
,当
在300以上时对企业限产
,企业甲是被管控的企业之一,若企业甲正常生产一天可得利润2万元,若以频率当概率,不考虑其他因素:
①在这一年中随意抽取5天,求5天中企业被限产达到或超过
的恰为2天的概率;
②求企业甲这一年因限产减少的利润的期望值.

![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | 大于300 |
空气质量 | 优 | 良 | 轻微污染 | 轻度污染 | 中度污染 | 中度重 污染 | 重度污染 |
天数 | 10 | 15 | 20 | 30 | 7 | 6 | 12 |
(Ⅰ)若本次抽取的样本数据有30天是在供暖季,其中有7天为重度污染,完成下面


| 非重度污染 | 重度污染 | 合计 |
供暖季 | | | |
非供暖季 | | | |
合计 | | | 100 |
![]() | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:

(Ⅱ)政府要治理污染,决定对某些企业生产进行管控,当











①在这一年中随意抽取5天,求5天中企业被限产达到或超过

②求企业甲这一年因限产减少的利润的期望值.
“双十一”已经成为网民们的网购狂欢节,某电子商务平台对某市的网民在今年“双十一”的网购情况进行摸底调查,用随机抽样的方法抽取了100人,其消费金额
(百元)的频率分布直方图如图所示:
(1)求网民消费金额
的中位数
;
(2)把下表中空格里的数填上,能否有
的把握认为网购消费与性别有关;
(3)将(2)中的频率当作概率,电子商务平台从该市网民中随机抽取10人赠送电子礼金,求这10人中女性的人数
的数学期望.

附表:
.

(1)求网民消费金额


(2)把下表中空格里的数填上,能否有

(3)将(2)中的频率当作概率,电子商务平台从该市网民中随机抽取10人赠送电子礼金,求这10人中女性的人数


| 男 | 女 | 合计 |
![]() | | | |
![]() | | 30 | |
合计 | 45 | | |
附表:
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |

某中学为了解高二学生对“地方历史”校本课程的喜欢是否与在本地成长有关,在全校高二学生中随机抽取了20名,得到一组不完全的统计数据如下表:

(1)补齐上表数据,并分别从被抽取的喜欢“地方历史”校本课程与不喜欢“地方历史”校本课程的学生中各选1名做进一步访谈,求至少有1名学生属于在本地成长的概率;
(2)试回答:能否在犯错误的概率不超过0.10的前提下认为“是否喜欢地方历史校本课程与在本地成长有关”.
附:

(参考公式:
,其中
)

(1)补齐上表数据,并分别从被抽取的喜欢“地方历史”校本课程与不喜欢“地方历史”校本课程的学生中各选1名做进一步访谈,求至少有1名学生属于在本地成长的概率;
(2)试回答:能否在犯错误的概率不超过0.10的前提下认为“是否喜欢地方历史校本课程与在本地成长有关”.
附:

(参考公式:


有甲、乙两个桔柚(球形水果)种植基地,已知所有采摘的桔柚的直径都在
范围内(单位:毫米,以下同),按规定直径在
内为优质品,现从甲、乙两基地所采摘的桔柚中各随机抽取500个,测量这些桔柚的直径,所得数据整理如下:

(1)根据以上统计数据完成下面
列联表,并回答是否有
以上的把握认为“桔柚直径与所在基地有关”?

(2)求优质品率较高的基地的500个桔柚直径的样本平均数
(同一组数据用该区间的中点值作代表);
(3)记甲基地直径在
范围内的五个桔柚分别为
,现从中任取二个,求含桔柚
的概率.
附:
,
.



(1)根据以上统计数据完成下面



(2)求优质品率较高的基地的500个桔柚直径的样本平均数

(3)记甲基地直径在



附:



为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援.现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于
厘米的玉米为高茎玉米,否则为矮茎玉米

(1)完成
列联表,并判断是否可以在犯错误概率不超过
的前提下,认为抗倒伏与玉米矮茎有关?
(2)为了改良玉米品种,现采用分层抽样的方式从抗倒伏的玉米中抽出
株,再从这
株玉米中选取
株进行杂交实验,选取的植株均为矮茎的概率是多少?
(
,其中
)


(1)完成


(2)为了改良玉米品种,现采用分层抽样的方式从抗倒伏的玉米中抽出



![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(


为了解学生的课外阅读时间情况,某学校随机抽取了 50人进行统计分析,把这50人每天阅读的时间(单位:分钟)绘制成频数分布表,如下表所示:

若把每天阅读时间在60分钟以上(含60分钟)的同学称为“阅读达人”,根据统计结果中男女生阅读达人的数据,制作出如图所示的等高条形图.

(1)根据抽样结果估计该校学生的每天平均阅读时间(同一组数据用该区间的中点值作为代表);
(2)根据已知条件完成下面的
列联表,并判断是否有
的把握认为“阅读达人”跟性别有关?

附:参考公式
,其中
.
临界值表:

若把每天阅读时间在60分钟以上(含60分钟)的同学称为“阅读达人”,根据统计结果中男女生阅读达人的数据,制作出如图所示的等高条形图.

(1)根据抽样结果估计该校学生的每天平均阅读时间(同一组数据用该区间的中点值作为代表);
(2)根据已知条件完成下面的



附:参考公式


临界值表:

电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:

将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成下面的22列联表,并据此资料你是否认为“体育迷”与性别有关?
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).
附:
.

将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成下面的22列联表,并据此资料你是否认为“体育迷”与性别有关?
| 非体育迷 | 体育迷 | 合计 |
男 | | | |
女 | | 10 | 55 |
合计 | | | |
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).
附:

P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |