- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 完善列联表
- 列联表分析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了调查某高中学生每天的睡眠时间,随即对20名男生和20名女生进行问卷调查.

(1)现把睡眠时间不足5小时的定义为“严重睡眠不足”,从睡眠时间不足6小时的女生中随机抽取3人,求此3人中恰有一人为“睡眠严重不足”的概率;
(2)完成下面
列联表,并回答是否有
的把握认为“睡眠时间与性别有关”?

参考公式:
,
临界表值:

(1)现把睡眠时间不足5小时的定义为“严重睡眠不足”,从睡眠时间不足6小时的女生中随机抽取3人,求此3人中恰有一人为“睡眠严重不足”的概率;
(2)完成下面



参考公式:


临界表值:

“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:

(1)若采用样本估计总体的方式,试估计小王的所有微信好友中每日走路步数超过5000步的概率;
(2)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的
列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?
附:
,

(1)若采用样本估计总体的方式,试估计小王的所有微信好友中每日走路步数超过5000步的概率;
(2)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的



![]() | 0.10 | 0.05 | 0.025 | 0.010 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 |
某淘宝店经过对春节七天假期的消费者进行统计,发现在金额不超过1000元的消费者中男女比例为
,该店按此比例抽取了100名消费者进行进一步分析,得到下表女性消费情况:
男性消费情况:
若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”
(1)分别计算女性和男性消费的平均数,并判断平均消费水平高的一方“网购达人”出手是否更阔绰?
(2)根据以上统计数据填写如下
列联表,并回答能否在犯错误的概率不超过
的前提下认为“是否为‘网购达人’与性别有关”.
附:
.

消费金额(元) | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | 5 | 10 | 15 | 47 | 3 |
男性消费情况:
消费金额(元) | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | 2 | 3 | 10 | 3 | 2 |
若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”
(1)分别计算女性和男性消费的平均数,并判断平均消费水平高的一方“网购达人”出手是否更阔绰?
(2)根据以上统计数据填写如下


| 女性 | 男性 | 合计 |
“网购达人” | | | |
“非网购达人” | | | |
合计 | | | |
附:

![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
某商场对甲、乙两种品牌的商品进行为期100天的营销活动,为调查者100天的日销售情况,随机抽取了10天的日销售量(单位:件)作为样本,样本数据的茎叶图如图,若日销量不低于50件,则称当日为“畅销日”.

(1)现从甲品牌日销量大于40且小于60的样本中任取两天,求这两天都是“畅销日”的概率;
(2)用抽取的样本估计这100天的销售情况,请完成这两种品牌100天销量的
列联表,并判断是否有
的把握认为品牌与“畅销日”天数有关.
附:
(其中
)

(1)现从甲品牌日销量大于40且小于60的样本中任取两天,求这两天都是“畅销日”的概率;
(2)用抽取的样本估计这100天的销售情况,请完成这两种品牌100天销量的


附:


![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
| 畅销日天数 | 非畅销日天数 | 合计 |
甲品牌 | | | |
乙品牌 | | | |
合计 | | | |
某城市随机抽取一年(365天)内100天的空气质量指数API的检测数据,结果统计如下:
记某企业每天由空气污染造成的经济损失
(单位:元),空气质量指数
为
.在区间
对企业没有造成经济损失;在区间
对企业造成经济损失成直线模型(当
为150时造成的经济损失为500元,当
为200时,造成的经济损失为700元);当
大于300时造成的经济损失为2000元.(1)试写出
的表达式;
(2)估计在本年内随机抽取一天,该天经济损失
大于200元且不超过600元的概率;
(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下列
列联表,并判断能否有
的把握认为该市本年空气重度污染与供暖有关?

API | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | 大于300 |
空气质量 | 优 | 良 | 轻微污染 | 轻度污染 | 中度污染 | 中度重污染 | 重度污染 |
天数 | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
记某企业每天由空气污染造成的经济损失









(2)估计在本年内随机抽取一天,该天经济损失

(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下列


![]() | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 1.32 | 2.07 | 2.70 | 3.84 | 5.02 | 6.63 | 7.87 | 10.82 |

| 非重度污染 | 重度污染 | 合计 |
供暖季 | | | |
非供暖季 | | | |
合计 | | | 100 |
某省高考改革实施方案指出:该省高考考生总成绩将由语文、数学、外语3门统一高考成绩和学生自主选择的学业水平等级性考试科目共同构成,该省教育厅为了解正在读高中的学生家长对高考改革方案所持的赞成态度,随机从中抽取了100名城乡家长作为样本进行调查,调查结果显示样本中有25人持不赞成意见,如图是根据样本的调查结果绘制的等高条形图.

(1)根据已知条件与等高条形图完成下面的
列联表,并判断能否有95%的把握认为“是否赞成高考改革方案与城乡户口有关”?

注:
,其中
.

(2)用样本的频率估计概率,若随机在全省不赞成高考改革的家长中抽取3个,记这3个家长中是城镇户口的人数为
,试求
的分布列及数学期望
.

(1)根据已知条件与等高条形图完成下面的


注:



(2)用样本的频率估计概率,若随机在全省不赞成高考改革的家长中抽取3个,记这3个家长中是城镇户口的人数为



某工厂用甲、乙两种不同工艺生产一大批同一种零件,零件尺寸均在[21.7,22.3](单位:cm)之间,把零件尺寸在[21.9,22.1)的记为一等品,尺寸在[21.8,21.9)∪[22.1,22.2)的记为二等品,尺寸在[21.7,21.8)∪[22.2,22.3]的记为三等品,现从甲、乙工艺生产的零件中各随机抽取100件产品,所得零件尺寸的频率分布直方图如图所示.


(1)根据上述数据完成下列2×2列联表,根据此数据,你认为选择不同的工艺与生产出一等品是否有关?
(2)以上述各种产品的频率作为各种产品发生的概率,若一等品、二等品、三等品的单件利润分别为30元、20元、15元,你认为以后该工厂应该选择哪种工艺生产该种零件?请说明理由.


P(K2≥k0) | 0.10 | 0.05 | 0.01 |
k0 | 2.706 | 3.841 | 6.635 |
附:

(1)根据上述数据完成下列2×2列联表,根据此数据,你认为选择不同的工艺与生产出一等品是否有关?
| 甲工艺 | 乙工艺 | 总计 |
一等品 | | | |
非一等品 | | | |
总计 | | | |
(2)以上述各种产品的频率作为各种产品发生的概率,若一等品、二等品、三等品的单件利润分别为30元、20元、15元,你认为以后该工厂应该选择哪种工艺生产该种零件?请说明理由.
下面是一个2×2列联表,则表中
,
的值分别为


| ![]() | ![]() | 合计 |
![]() | ![]() | 21 | 73 |
![]() | 2 | 25 | 27 |
合计 | ![]() | 46 | 100 |
A.94,96 | B.52,50 |
C.52,54 | D.54,52 |
下面是一个2×2列联表,则表中a、b的值分别为 ( )
| y1 | y2 | 合计 |
x1 | a | 21 | 73 |
x2 | 2 | 25 | 27 |
合计 | b | 46 | 100 |
A.94、96 | B.52、50 |
C.52、54 | D.54、52 |
某项运动组委会为了搞好接待工作,招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余人不喜爱运动.得到下表:

(1)根据以上数据完成2×2列联表, 问:能否在犯错误的概率不超过0.10的前提下,认为性别与喜爱运动有关?并说明理由.
(2)如果从喜欢运动的女志愿者中(其中恰有4人会外语)抽取2名,求抽出的志愿者中能胜任翻译工作的人数
的分布列及数学期望.
参考公式:
参考数据:

(1)根据以上数据完成2×2列联表, 问:能否在犯错误的概率不超过0.10的前提下,认为性别与喜爱运动有关?并说明理由.
(2)如果从喜欢运动的女志愿者中(其中恰有4人会外语)抽取2名,求抽出的志愿者中能胜任翻译工作的人数

参考公式:

参考数据:
