学校对甲、乙两个班级的同学进行了体能测验,成绩统计如下(每班50人):

(1)成绩不低于80分记为“优秀”.请填写下面的列联表,并判断是否有的把握认为“成绩优秀”与所在教学班级有关?

(2)从两个班级的成绩在的所有学生中任选2人,其中,甲班被选出的学生数记为,求的分布列与数学期望.
赋:.
当前题号:1 | 题型:解答题 | 难度:0.99
某学校高三年级有学生1000名,经调查,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分两层)从该年级的学生中抽查100名同学.如果以身高达到165厘米作为达标的标准,对抽取的100名学生进行统计,得到以下列联表:
 
身高达标
身高不达标
总计
积极参加体育锻炼
40
 
 
不积极参加体育锻炼
 
15
 
总计
 
 
100
 
(1)完成上表;
(2)能否有犯错率不超过0.05的前提下认为体育锻炼与身高达标有关系?(的观测值精确到0.001).
参考公式:
参考数据:
P(K2≥k)
0.25
0.15
0.10
0.05
0.025
0.010
0.001
k
1.323
2.072
2.706
3.841
5.024
6.635
10.828
 
当前题号:2 | 题型:解答题 | 难度:0.99
现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.
月收入(单位百元)
[15,25
[25,35
[35,45
[45,55
[55,65
[65,75
频数
5
10
15
10
5
5
赞成人数
4
8
12
5
2
1
 
(1)由以上统计数据求下面22列联表中的的值,并问是否有99%的把握认为“月收入以5500为分界点对“楼市限购令” 的态度有差异;
 
月收入低于55百元的人数
月收入不低于55百元的人数
合计
赞成
a
b
 
不赞成
c
d
 
合计
 
 
 50
 
(2)若对在[55,65)内的被调查者中随机选取两人进行追踪调查,记选中的2人中不赞成“楼市限购令”的人数为,求的概率.
附:

0.10
0.05
0.025
0.010
0.001

2.706
3.841
5.024
6.635
10.828
 
当前题号:3 | 题型:解答题 | 难度:0.99
随着电子商务的发展, 人们的购物习惯正在改变, 基本上所有的需求都可以通过网络购物解决. 小韩是位网购达人, 每次购买商品成功后都会对电商的商品和服务进行评价. 现对其近年的200次成功交易进行评价统计, 统计结果如下表所示.
 
对服务好评
对服务不满意
合计
对商品好评
80
40
120
对商品不满意
70
10
80
合计
150
50
200
 
(1) 是否有的把握认为商品好评与服务好评有关? 请说明理由;
(2) 若针对商品的好评率, 采用分层抽样的方式从这200次交易中取出5次交易, 并从中选择两次交易进行观察, 求只有一次好评的概率.
















 
,其中
当前题号:4 | 题型:解答题 | 难度:0.99
支付宝和微信支付是目前市场占有率较高的支付方式,某第三方调研机构对使用这两种支付方式的人数作了对比.从全国随机抽取了100个地区作为研究样本,计算了各个地区样本的使用人数,其频率分布直方图如图.

(1)记A表示事件“微信支付人数低于50千人”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为支付人数与支付方式有关;
 
支付人数<50千人
支付人数≥50千人
总计
微信支付
 
 
 
支付宝支付
 
 
 
总计
 
 
 
 
(3)根据支付人数的频率分布直方图,对两种支付方式的优劣进行比较.
附:
P(K2≥K)
0.050
0.010
0.001
K
3.841
6.635
10.828
 
K2=
当前题号:5 | 题型:解答题 | 难度:0.99
电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:


将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成上面的列联表,若按的可靠性要求,并据此资料,你是否认为“体育迷”与性别有关?
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为.若每次抽取的结果是相互独立的,求分布列,期望和方差.
附:
当前题号:6 | 题型:解答题 | 难度:0.99
2016年10月16日,***在印度果阿出席金砖国家领导人第八次会议时,发表了题为《坚定信心,共谋发展》的重要讲话,引起世界各国的关注,为了了解关注程度,某机构选取“70后”和“80后”两个年龄段作为调查对象,进行了问卷调查,共调查了120名“80后”,80名“70后”,其中调查的“80后”有40名不关注,其余的全部关注;调查的“70”后有10人不关注,其余的全部关注.
(1)根据以上数据完成下列2×2列联表:
 
关注
不关注
合计
“80后”
 
 
 
“70后”
 
 
 
合计
 
 
 
 
(2)根据2×2列联表,能否在犯错误的概率不超过0.001的前提下,认为“关注与年龄段有关”?请说明理由。
参考公式:K2=(n=a+b+c+d)
附表:
P(K2≥k0
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k0
0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:7 | 题型:解答题 | 难度:0.99
为做好2022年北京冬季奥运会的宣传工作,组委会计划从某大学选取若干大学生志愿者,某记者在该大学随机调查了1000名大学生,以了解他们是否愿意做志愿者工作,得到的数据如表所示:
 
愿意做志愿者工作
不愿意做志愿者工作
合计
男大学生
 
 
610
女大学生
 
90
 
合计
800
 
 
 
(1)根据题意完成表格;
(2)是否有的把握认为愿意做志愿者工作与性别有关?
当前题号:8 | 题型:解答题 | 难度:0.99
某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在40分以下的学生后,共有男生300名,女生200名.现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.

(1)估计男、女生各自的平均分(同一组数据用该组区间中点值作代表),从计算结果看,数学成绩与性别是否有关;
(2)规定80分以上为优分(含80分),请你根据已知条件作出2×2列联表,并判断是否有90%以上的把握认为“数学成绩与性别有关”.

附表及公式:

P(K2k)

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

 

 
 
当前题号:9 | 题型:解答题 | 难度:0.99
近年空气质量逐步恶化,雾霾天气现象增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对心肺疾病入院的人进行问卷调查,得到了如下的列联表:
 
患心肺疾病
不患心肺疾病
合计

A






合计

B

 
(1)根据已知条件求出上面的列联表中的A和B;用分层抽样的方法在患心肺疾病的人群中抽人,其中男性抽多少人?
(2)为了研究心肺疾病是否与性别有关,请计算出统计量,并说明是否有的把握认为心肺疾病与性别有关?   
下面的临界值表供参考:
















 
参考公式: ,其中.
当前题号:10 | 题型:解答题 | 难度:0.99