- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 列联表
- 完善列联表
- 列联表分析
- 等高条形图
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查,得到数据如表所示(平均每天喝500ml以上为常喝,体重超过50kg为肥胖):
(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由.
参考数据:
附:
| 常喝 | 不常喝 | 合计 |
肥胖 | | 2 | 8 |
不肥胖 | | 18 | |
合计 | | | 30 |
(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由.
![]() | ![]() |
![]() | 3.841 6.635 |
参考数据:
附:

有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
已知在全部105人中随机抽取1人为优秀的概率为
.
(1)请完成上面的列联表;
(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”?
参考公式:K2=
| 优秀 | 非优秀 | 总计 |
甲班 | 10 | | |
乙班 | | 30 | |
总计 | | | 105 |
已知在全部105人中随机抽取1人为优秀的概率为

(1)请完成上面的列联表;
(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”?
参考公式:K2=

P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
2017年10月9日,教育部考试中心下发了《关于
年普通高考考试大纲修订内容的通知》,在各科修订内容中明确提出,增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用.鞍山市教育部门积极回应,编辑传统文化教材,在全是范围内开设书法课,经典诵读等课程.为了了解市民对开设传统文化课的态度,教育机构随机抽取了
位市民进行了解,发现支持开展的占
,在抽取的男性市民
人中支持态度的为
人.
(1)完成
列联表
(2)判断是否有
的把握认为性别与支持有关?
附:
.





| 支持 | 不支持 | 合计 |
男性 | | | |
女性 | | | |
合计 | | | |
(1)完成

(2)判断是否有

附:

![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |



| 支持 | 不支持 | 合计 |
男性市民 | | | ![]() |
女性市民 | | ![]() | |
合计 | ![]() | | ![]() |
(1)根据已知数据,把表格数据填写完整;
(2)利用(1)完成的表格数据回答下列问题:
(i)能否在犯错误的概率不超过

(ii)已知在被调查的支持申办足球世界杯的男性市民中有





附:


![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
某种子培育基地新研发了
两种型号的种子,从中选出90粒进行发芽试验,并根据结果对种子进行改良.将试验结果汇总整理绘制成如下
列联表:

(1)将
列联表补充完整,并判断是否有99%的把握认为发芽和种子型号有关;
(2)若按照分层抽样的方式,从不发芽的种子中任意抽取20粒作为研究小样本,并从这20粒研究小样本中任意取出3粒种子,设取出的
型号的种子数为
,求
的分布列与期望.
,其中
.



(1)将

(2)若按照分层抽样的方式,从不发芽的种子中任意抽取20粒作为研究小样本,并从这20粒研究小样本中任意取出3粒种子,设取出的



![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |


博鳌亚洲论坛2018年年会于4月8日至11日在海南博鳌举行.为了搞好对外宣传工作,会务组选聘了50名记者担任对外翻译工作在右面“性别与会俄语”的
列联表中,
__________ .


| 会俄语 | 不会俄语 | 总计 |
男 | ![]() | ![]() | 20 |
女 | 6 | ![]() | |
总计 | 18 | | 50 |
为了解某班学生喜爱打篮球是否与性别有关,对本班48人进行了问卷调查得到了如下的2×2列联表:
已知在全班48人中随机抽取1人,抽到喜爱打篮球的学生的概率为
.
(1)请将上面的2×2列联表补充完整;(不用写计算过程)
(2)能否在犯错误的概率不超过0.05的前提下认为喜爱打篮球与性别有关?说明你的理由.
(参考公式:
,其中
)
| 喜爱打篮球 | 不喜爱打篮球 | 合计 |
男生 | | 6 | |
女生 | 10 | | |
合计 | | | 48 |
已知在全班48人中随机抽取1人,抽到喜爱打篮球的学生的概率为

(1)请将上面的2×2列联表补充完整;(不用写计算过程)
(2)能否在犯错误的概率不超过0.05的前提下认为喜爱打篮球与性别有关?说明你的理由.
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:


某企业对现有设备进行了改造,为了了解设备改造后的效果,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测其质量指标值,若质量指标值在
内,则该产品视为合格品,否则视为不合格品.图1是设备改造前的样本的频率分布直方图,表1是设备改造后的样本的频数分布表.

(1)完成
列联表,并判断是否有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关:
(2)根据图1和表1提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;
(3)企业将不合格品全部销毁后,根据客户需求对合格品进行等级细分,质量指标值落在
内的定为一等品,每件售价180元;质量指标值落在
或
内的定为二等品,每件售价150元;其他的合格品定为三等品,每件售价120元.根据频数分布表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有合格产品中抽到一件相应等级产品的概率.现有一名顾客随机购买两件产品,设其支付的费用为
(单位:元),求
的分布列和数学期望.
附:


(1)完成

| 设备改造前 | 设备改造后 | 合计 |
合格品 | | | |
不合格品 | | | |
合计 | | | |
(2)根据图1和表1提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;
(3)企业将不合格品全部销毁后,根据客户需求对合格品进行等级细分,质量指标值落在





附:
![]() | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
参考公式:,
2018年6月14日,第二十一届世界杯足球赛将在俄罗斯拉开帷幕.为了了解喜爱足球运动是否与性别有关,某体育台随机抽取100名观众进行统计,得到如下
列联表.

(1)将
列联表补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为喜爱足球运动与性别有关?
(2)在不喜爱足球运动的观众中,按性别分别用分层抽样的方式抽取6人,再从这6人中随机抽取2人参加一台访谈节目,求这2人至少有一位男性的概率.


(1)将

(2)在不喜爱足球运动的观众中,按性别分别用分层抽样的方式抽取6人,再从这6人中随机抽取2人参加一台访谈节目,求这2人至少有一位男性的概率.
