某农科站技术员为了解某品种树苗的生长情况,在该批树苗中随机抽取一个容量为100的样本,测量树苗高度(单位:cm).经统计,高度均在区间[20,50]内,将其按[20,25),[25,30),[30,35),[35,40),[40,45),[45,50]分成6组,制成如图所示的频率分布直方图,其中高度不低于40cm的树苗为优质树苗.

(1)已知所抽取的这100棵树苗来自于甲、乙两个地区,部分数据如下2×2列联表所示,将列联表补充完整,并根据列联表判断是否有99.9%的把握认为优质树苗与地区有关?
(2)用样本估计总体的方式,从这批树苗中随机抽取4棵,期中优质树苗的棵数记为X,求X的分布列和数学期望.
 
甲地区
乙地区
合计
优质树苗
5
 
 
非优质树苗
 
25
 
合计
 
 
 
 
附:K2,其中na+b+c+d
PK2k0
0.025
0.010
0.005
0.001
k0
5.024
6.635
7.879
10.828
 
当前题号:1 | 题型:解答题 | 难度:0.99
在一次独立性检验中,得出列联表如图:且最后发现,两个分类变量AB没有任何关系,则a的可能值是(   )
 
A

合计
B
200
800
1000

180
a
180+a
合计
380
800+a
1180+a
 
A.200B.720C.100D.180
当前题号:2 | 题型:单选题 | 难度:0.99
十三届全国人大二次会议于2019年3月5日在京召开.为了了解某校大学生对两会的关注程度,学校媒体在开幕后的第二天,从学生中随机抽取了180人,对是否收看2019年两会开幕会情况进行了问卷调查,统计数据得到列联表如下:
 
收看
没收看
合计
男生
 
40
 
女生
30
 
60
合计
 
 
 
 
(1)请完成列联表;
(2)根据上表说明,能否有99%的把握认为该校大学生收看开幕会与性别有关?(结果精确到0.001)
附:,其中.

0.10
0.05
0.025
0.01
0.005

2.706
3.841
5.024
6.635
7.879
 
当前题号:3 | 题型:解答题 | 难度:0.99
某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改革.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在,按照区间进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.

(1)完成表格,并判断是否有90%以上的把握认为“数学成绩优秀与教学改革有关”;
 
甲班
乙班
总计
大于等于80分的人数
 
 
 
小于80分的人数
 
 
 
总计
 
 
 
 
(2)从乙班分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自发言的人数为随机变量,求的分布列和期望.附:

0.10
0.05
0.025

2.706
3.841
5.024
 
当前题号:4 | 题型:解答题 | 难度:0.99
学校组织高考组考工作,为了搞好接待组委会招募了名男志愿者和名女志愿者,调查发现,男、女志愿者中分别有人和人喜爱运动,其余不喜爱.
(1)根据以上数据完成以下列联表;并要求列联表的独立性检验,能否在犯错误的概率不超过的前提下认为性别与喜爱运动有关?
 
喜爱运动
不喜爱运动
总计


 
 

 
 
 
总计
 
 
 
 
(2)如果从喜欢运动的女志愿者中(其中恰有人会外语),抽取名负责翻译工作,则抽出的志愿者中人恰有一人胜任翻译工作的概率是多少?
参考公式:,其中
参考答数:










 
当前题号:5 | 题型:解答题 | 难度:0.99
某工厂共有男女员工500人,现从中抽取100位员工对他们每月完成合格产品的件数统计如下:
每月完成合格产品的件数(单位:百件)





频数
10
45
35
6
4
男员工人数
7
23
18
1
1
 
(1)其中每月完成合格产品的件数不少于3200件的员工被评为“生产能手”.由以上统计数据填写下面列联表,并判断是否有95%的把握认为“生产能手”与性别有关?
 
非“生产能手”
“生产能手”
合计
男员工
 
 
 
女员工
 
 
 
合计
 
 
 
 
(2)为提高员工劳动的积极性,工厂实行累进计件工资制:规定每月完成合格产品的件数在定额2600件以内的,计件单价为1元;超出件的部分,累进计件单价为1.2元;超出件的部分,累进计件单价为1.3元;超出400件以上的部分,累进计件单价为1.4元.将这4段中各段的频率视为相应的概率,在该厂男员工中选取1人,女员工中随机选取2人进行工资调查,设实得计件工资(实得计件工资=定额计件工资+超定额计件工资)不少于3100元的人数为,求的分布列和数学期望.
附:
.
当前题号:6 | 题型:解答题 | 难度:0.99
为考查某种疫苗预防疾病的效果,进行动物实验,得到统计数据如下表:
 
未发病
发病
合计
未注射疫苗
40


注射疫苗
60


合计
100
100
200
 
现从所有试验动物中任取一只,取到“注射疫苗”动物的概率为.

(1)求列联表中的数据的值;
(2)在图中绘制发病率的条形统计图,并判断疫苗是否有效?
(3)在出错概率不超过的条件下能否认为疫苗有效?
附:.

0.05
0.01
0.005
0.001

3.841
6.635
7.879
10.828
 
当前题号:7 | 题型:解答题 | 难度:0.99
2017年3月18日,国务院办公厅发布了《生活垃圾分类制度实施方案》,我市环保部门组织了一次垃圾分类知识的网络问卷调查,每位市民都可以通过电脑网络或手机微信平台参与,但仅有一次参加机会工作人员通过随机抽样,得到参与网络问卷调查的100人的得分(满分按100分计)数据,统计结果如下表.
组别







2
4
4
15
21
9

1
4
10
10
12
8
 
(1)环保部门规定:问卷得分不低于70分的市民被称为“环保关注者”.请列出列联表,并判断能否在犯错误的概率不超过的前提下,认为是否为“环保关注者”与性别有关?
(2)若问卷得分不低于80分的人称为“环保达人”.现在从本次调查的“环保达人”中利用分层抽样的方法随机抽取5名市民参与环保知识问答,再从这5名市民中抽取2人参与座谈会,求抽取的2名市民中,既有男“环保达人”又有女“环保达人”的概率.
附表及公式:
















 
当前题号:8 | 题型:解答题 | 难度:0.99