- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 列联表
- 完善列联表
- 列联表分析
- 等高条形图
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
近年电子商务蓬勃发展,平台对每次成功交易都有针对商品和快递是否满意的评价系统.从该评价系统中选出200次成功交易,并对其评价进行统计,网购者对商品的满意率为0.70,对快递的满意率为0.60,商品和快递都满意的交易为80
(Ⅰ)根据已知条件完成下面的
列联表,并回答能否有99%认为“网购者对商品满意与对快递满意之间有关系”?
(Ⅱ)若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和快递都满意的次数为随机变量
,求
的分布列和数学期望
.
附:
,
(Ⅰ)根据已知条件完成下面的

| 对快递满意 | 对快递不满意 | 合计 |
对商品满意 | 80 | | |
对商品不满意 | | | |
合计 | | | 200 |
(Ⅱ)若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和快递都满意的次数为随机变量



附:

![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
2016年04月13日“山东济南非法经营疫苗系列案件”披露后,引发社会高度关注,引起公众、受种者和儿童家长对涉案疫苗安全性和有效性的担忧。为采取后续处置措施提供依据,保障受种者的健康,尽快恢复公众接种疫苗的信心,科学严谨地分析涉案疫苗接种给受种者带来的安全性风险和是否有效,对某疫苗预防疾病的效果,进行动物实验,得到下面表格中的统计数据:现从所有试验动物中任取一只,取到“注射疫苗”动物的概率为
.
(1)求
列联表中的数据
的值;
(2)绘制发病率的条形统计图,并判断疫苗是否有效?

(3)能够有多大把握认为疫苗有效?
附:

| 未发病 | 发病 | 合计 |
未注射疫苗 | ![]() | ![]() | ![]() |
注射疫苗 | ![]() | ![]() | ![]() |
合计 | ![]() | ![]() | ![]() |
(1)求


(2)绘制发病率的条形统计图,并判断疫苗是否有效?

![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
(3)能够有多大把握认为疫苗有效?
附:

随着生活水平的提高,越来越多的人参与了潜水这项活动.某潜水中心调查了100名男性与100女性下潜至距离水面5米时是否耳鸣,下图为其等高条形图:

①绘出
列联表;
②根据列联表的独立性检验,能否在犯错误的概率不超过0.005的前提下认为耳鸣与性别有关系?
附:
,其中
.

①绘出

②根据列联表的独立性检验,能否在犯错误的概率不超过0.005的前提下认为耳鸣与性别有关系?
附:


![]() | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 5.024 | 6.635 | 7.879 | 10.828 |
微信红包是一款年轻人非常喜欢的手机应用.某网络运营商对甲、乙两个品牌各
种型号的手机在相同环境下抢到红包的个数进行统计,得到如下数据:
(Ⅰ)如果抢到红包个数超过
个的手机型号为“优良”,否则为“一般”,请完成上述表格,并据此判断是否有
的把握认为抢到红包的个数与手机品牌有关?
(Ⅱ)不考虑其它因素,现要从甲、乙两品牌的
种型号中各选出
种型号的手机进行促销活动,求恰有一种型号是“优良”,另一种型号是“一般”的概率;
参考公式:随机变量
的观察值计算公式:
,
其中
.临界值表:

品牌 型号 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ |
甲品牌(个) | 4 | 3 | 8 | 6 | 12 |
乙品牌(个) | 5 | 7 | 9 | 4 | 3 |
红包个数 手机品牌 | 优良 | 一般 | 合计 |
甲品牌(个) | | | |
乙品牌(个) | | | |
合计 | | | |
(Ⅰ)如果抢到红包个数超过


(Ⅱ)不考虑其它因素,现要从甲、乙两品牌的


参考公式:随机变量


其中

![]() | 0.10 | 0.050 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |
某县教育局为了检查本县甲、乙两所学校的学生对安全知识的学习情况,在这两所学校进行了安全知识测试,随机在这两所学校各抽取20名学生的考试成绩作为样本,成绩大于或等于80分的为优秀,否则为不优秀,统计结果如图:

甲校 乙校
(1)从乙校成绩优秀的学生中任选两名,求这两名学生的成绩恰有一个落在
内的概率;
(2)由以上数据完成下面列联表,并回答能否在犯错的概率不超过0.1的前提下认为学生的成绩与两所学校的选择有关。


甲校 乙校
(1)从乙校成绩优秀的学生中任选两名,求这两名学生的成绩恰有一个落在

(2)由以上数据完成下面列联表,并回答能否在犯错的概率不超过0.1的前提下认为学生的成绩与两所学校的选择有关。
| 甲校 | 乙校 | 总计 |
优秀 | | | |
不优秀 | | | |
总计 | | | |
2018年俄罗斯世界杯激战正酣,某校工会对全校教职工在世界杯期间每天收看比赛的时间作了一次调查,得到如下频数分布表:
(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“球迷”,否则定义为“非球迷”,请根据频数分布表补全
列联表:
并判断能否有90%的把握认为该校教职工是否为“球迷”与“性别”有关;
(2)在全校“球迷”中按性别分层抽样抽取6名,再从这6名“球迷”中选取2名世界杯知识讲座.记其中女职工的人数为
,求的
分布列与数学期望.
附表及公式:
.
收看时间 (单位:小时) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | 14 | ![]() | ![]() | 28 | 20 | 12 |
(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“球迷”,否则定义为“非球迷”,请根据频数分布表补全

| 男 | 女 | 合计 |
球迷 | 40 | | |
非球迷 | | ![]() | |
合计 | | | |
并判断能否有90%的把握认为该校教职工是否为“球迷”与“性别”有关;
(2)在全校“球迷”中按性别分层抽样抽取6名,再从这6名“球迷”中选取2名世界杯知识讲座.记其中女职工的人数为


附表及公式:
![]() | 0.15 | 0.10 | 0.05 | 0.025 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 |

2016年10月16日,***在印度果阿出席金砖国家领导人第八次会议时,发表了题为《坚定信心,共谋发展》的重要讲话,引起世界各国的关注,为了了解关注程度,某机构选取“70后”和“80后”两个年龄段作为调查对象,进行了问卷调查,共调查了120名“80后”,80名“70后”,其中调查的“80后”有40名不关注,其余的全部关注:调查的“70后”有10人不关注,其余的全部关注.
(1)根据以上数据完成下列
列联表:

(2)根据
列联表,能否在犯错误的概率不超过0.001的前提下,认为“关注与年龄段有关”?请说明理由.
(1)根据以上数据完成下列


(2)根据

在某次测试中,卷面满分为100分,考生得分为整数,规定60分及以上为及格.某调研课题小组为了调查午休对考生复习效果的影响,对午休和不午休的考生进行了测试成绩的统计,数据如下表:
(1)根据上述表格完成下列列联表:
(2)判断“能否在犯错误的概率不超过0.010的前提下认为成绩及格与午休有关”?
(参考公式:
,其中
)
分数段 | 0~39 | 40~49 | 50~59 | 60~69 | 70~79 | 80~89 | 90~100 |
午休考生人数 | 29 | 34 | 37 | 29 | 23 | 18 | 10 |
不午休考生人数 | 20 | 52 | 68 | 30 | 15 | 12 | 3 |
(1)根据上述表格完成下列列联表:
| 及格人数 | 不及格人数 | 合计 |
午休 | | | |
不午休 | | | |
合计 | | | |
(2)判断“能否在犯错误的概率不超过0.010的前提下认为成绩及格与午休有关”?
![]() | 0.10 | 0.05 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |
(参考公式:


在某次测试中,卷面满分为100分,考生得分为整数,规定60分及以上为及格.某调研课题小组为了调查午休对考生复习效果的影响,对午休和不午休的考生进行了测试成绩的统计,数据如下表:

(1)根据上述表格完成下列列联表:

(2)判断“能否在犯错误的概率不超过0.010的前提下认为成绩及格与午休有关”?
(参考公式:
,其中
.)

(1)根据上述表格完成下列列联表:

(2)判断“能否在犯错误的概率不超过0.010的前提下认为成绩及格与午休有关”?
(参考公式:


![]() | 0.010 | 0.05 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |
某中学一名数学老师对全班50名学生某次考试成绩分男女生进行统计,其中120分(含120分)以上为优秀,绘制了如图所示的两个频率分布直方图:

(1)根据以上两个直方图完成下面的
列联表:
(2)根据(1)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系?
附:
,其中
.

(1)根据以上两个直方图完成下面的

性别 成绩 | 优秀 | 不优秀 | 总计 |
男生 | | | |
女生 | | | |
总计 | | | |
(2)根据(1)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系?
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
附:

