- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 回归分析
- + 独立性检验
- 列联表
- 等高条形图
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点


| 不支持 | 支持 | 合计 |
男性市民 | | | ![]() |
女性市民 | | ![]() | |
合计 | ![]() | | ![]() |
(1)根据已知数据把表格数据填写完整;
(2)利用(1)完成的表格数据回答下列问题:
(i)能否有

(ii)已知在被调查的支持申办足球世界杯的男性市民中有





参考公式:


参考数据:
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
为了研究家用轿车在高速公路上的车速情况,交通部门随机对50名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在30名男性驾驶员中,平均车速超过
的有20人,不超过
的有10人.在20名女性驾驶员中,平均车速超过
的有5人,不超过
的有15人.
(1)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过的人与性别有关;

(2)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为女性且车速不超过
的车辆数为
,若每次抽取的结果是相互独立的,求
的数学期望.
参考公式:
,其中
.
参考数据:




(1)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过的人与性别有关;

(2)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为女性且车速不超过



参考公式:


参考数据:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
随着生活水平的提高,越来越多的人参与了潜水这项活动.某潜水中心调查了100名男性与100女性下潜至距离水面5米时是否耳鸣,下图为其等高条形图:

①绘出
列联表;
②根据列联表的独立性检验,能否在犯错误的概率不超过0.005的前提下认为耳鸣与性别有关系?
附:
,其中
.

①绘出

②根据列联表的独立性检验,能否在犯错误的概率不超过0.005的前提下认为耳鸣与性别有关系?
附:


![]() | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 5.024 | 6.635 | 7.879 | 10.828 |
某研究型学习小组调查研究高中生使用智能手机对学习的影响,部分统计数据如下:
(1)根据以上统计数据,你是否有
的把握认为使用智能手机对学习有影响?
(2)为进一步了解学生对智能手机的使用习惯,现从全校使用智能手机的高中生中(人数很多)随机抽取
人,求抽取的学生中学习成绩优秀的与不优秀的都有的概率.
附:

| 使用智能手机 | 不使用智能手机 | 合计 |
学习成绩优秀 | ![]() | ![]() | |
学习成绩不优秀 | ![]() | ![]() | |
合计 | | | |
(1)根据以上统计数据,你是否有

(2)为进一步了解学生对智能手机的使用习惯,现从全校使用智能手机的高中生中(人数很多)随机抽取

附:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |

随着
业的迅速发展计算机也在迅速更新换代,平板电脑因使用和移动便捷以及时尚新潮性,而备受人们尤其是大学生的青睐,为了解大学生购买平板电脑进行学习的学习情况,某大学内进行了一次匿名调查,共收到1500份有效问卷.调查结果显示700名女学生中有300人,800名男生中有400人拥有平板电脑.
(Ⅰ)完成下列列联表:

(Ⅱ)分析是否有
的把握认为购买平板电脑与性别有关?
附:独立性检验临界值表:

(参考公式:
,其中
)

(Ⅰ)完成下列列联表:

(Ⅱ)分析是否有

附:独立性检验临界值表:

(参考公式:


微信红包是一款年轻人非常喜欢的手机应用.某网络运营商对甲、乙两个品牌各
种型号的手机在相同环境下抢到红包的个数进行统计,得到如下数据:
(Ⅰ)如果抢到红包个数超过
个的手机型号为“优良”,否则为“一般”,请完成上述表格,并据此判断是否有
的把握认为抢到红包的个数与手机品牌有关?
(Ⅱ)不考虑其它因素,现要从甲、乙两品牌的
种型号中各选出
种型号的手机进行促销活动,求恰有一种型号是“优良”,另一种型号是“一般”的概率;
参考公式:随机变量
的观察值计算公式:
,
其中
.临界值表:

品牌 型号 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ |
甲品牌(个) | 4 | 3 | 8 | 6 | 12 |
乙品牌(个) | 5 | 7 | 9 | 4 | 3 |
红包个数 手机品牌 | 优良 | 一般 | 合计 |
甲品牌(个) | | | |
乙品牌(个) | | | |
合计 | | | |
(Ⅰ)如果抢到红包个数超过


(Ⅱ)不考虑其它因素,现要从甲、乙两品牌的


参考公式:随机变量


其中

![]() | 0.10 | 0.050 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |
某县教育局为了检查本县甲、乙两所学校的学生对安全知识的学习情况,在这两所学校进行了安全知识测试,随机在这两所学校各抽取20名学生的考试成绩作为样本,成绩大于或等于80分的为优秀,否则为不优秀,统计结果如图:

甲校 乙校
(1)从乙校成绩优秀的学生中任选两名,求这两名学生的成绩恰有一个落在
内的概率;
(2)由以上数据完成下面列联表,并回答能否在犯错的概率不超过0.1的前提下认为学生的成绩与两所学校的选择有关。


甲校 乙校
(1)从乙校成绩优秀的学生中任选两名,求这两名学生的成绩恰有一个落在

(2)由以上数据完成下面列联表,并回答能否在犯错的概率不超过0.1的前提下认为学生的成绩与两所学校的选择有关。
| 甲校 | 乙校 | 总计 |
优秀 | | | |
不优秀 | | | |
总计 | | | |
某研究性学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如表

(参考公式:
,其中
.)
附表:
则下列选项正确的是( )

(参考公式:


附表:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
则下列选项正确的是( )
A.有![]() |
B.有![]() |
C.有![]() |
D.有![]() |
本小题12分)
调查某地区老年人是否需要志愿者帮助,用简单随机抽样方法从该地调查500位老年人,结果如下:
①估计该地区老年人中,需要志愿者提供帮助的老年人的比例.
②能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
附:

调查某地区老年人是否需要志愿者帮助,用简单随机抽样方法从该地调查500位老年人,结果如下:
性别 是否需要 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
①估计该地区老年人中,需要志愿者提供帮助的老年人的比例.
②能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |

2018年俄罗斯世界杯激战正酣,某校工会对全校教职工在世界杯期间每天收看比赛的时间作了一次调查,得到如下频数分布表:
(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“球迷”,否则定义为“非球迷”,请根据频数分布表补全
列联表:
并判断能否有90%的把握认为该校教职工是否为“球迷”与“性别”有关;
(2)在全校“球迷”中按性别分层抽样抽取6名,再从这6名“球迷”中选取2名世界杯知识讲座.记其中女职工的人数为
,求的
分布列与数学期望.
附表及公式:
.
收看时间 (单位:小时) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | 14 | ![]() | ![]() | 28 | 20 | 12 |
(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“球迷”,否则定义为“非球迷”,请根据频数分布表补全

| 男 | 女 | 合计 |
球迷 | 40 | | |
非球迷 | | ![]() | |
合计 | | | |
并判断能否有90%的把握认为该校教职工是否为“球迷”与“性别”有关;
(2)在全校“球迷”中按性别分层抽样抽取6名,再从这6名“球迷”中选取2名世界杯知识讲座.记其中女职工的人数为


附表及公式:
![]() | 0.15 | 0.10 | 0.05 | 0.025 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 |
