- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 回归分析
- + 独立性检验
- 列联表
- 等高条形图
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了研究“晚上喝绿茶与失眠”有无关系,调查了100名人士,得到下面的列联表:
由已知数据可以求得:
,则根据下面临界值表:
可以做出的结论是( )
| 失眠 | 不失眠 | 合计 |
晚上喝绿茶 | 16 | 40 | 56 |
晚上不喝绿茶 | 5 | 39 | 44 |
合计 | 21 | 79 | 100 |
由已知数据可以求得:

![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
可以做出的结论是( )
A.在犯错误的概率不超过0.01的前提下认为“晚上喝绿茶与失眠有关” |
B.在犯错误的概率不超过0.01的前提下认为“晚上喝绿茶与失眠无关” |
C.在犯错误的概率不超过0.05的前提下认为“晚上喝绿茶与失眠有关” |
D.在犯错误的概率不超过0.05的前提下认为“晚上喝绿茶与失眠无关” |
某校在本校任选了一个班级,对全班50名学生进行了作业量的调查,根据调查结果统计后,得到如下的
列联表,已知在这50人中随机抽取2人,这2人都“认为作业量大”的概率为
.
(Ⅰ)请完成上面的列联表;
(Ⅱ)根据列联表的数据,能否有
的把握认为“认为作业量大”与“性别”有关?
(Ⅲ)若视频率为概率,在全校随机抽取4人,其中“认为作业量大”的人数记为
,求
的分布列及数学期望.
附表:
附:


![]() | 认为作业量大 | 认为作业量不大 | 合计 |
男生 | 18 | | |
女生 | | 17 | |
合计 | | | 50 |
(Ⅰ)请完成上面的列联表;
(Ⅱ)根据列联表的数据,能否有

(Ⅲ)若视频率为概率,在全校随机抽取4人,其中“认为作业量大”的人数记为


附表:
![]() | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
附:

共享单车已成为一种时髦的新型环保交通工具,某共享单车公司为了拓展市场,对
两个品牌的共享单车在编号分别为
的五个城市的用户人数(单位:十万)进行统计,得到数据如下:
(Ⅰ)若共享单车用户人数超过50万的城市称为“优城”,否则称为“非优城”,据此判断能否有85%的把握认为“优城”和共享单车品牌有关?
(Ⅱ)若不考虑其它因素,为了拓展市场,对A品牌要从这五个城市选择三个城市进行宣传,
(ⅰ)求城市2被选中的概率;
(ⅱ)求在城市2被选中的条件下城市3也被选中的概率.



城市 品牌 | 1 | 2 | 3 | 4 | 5 |
A品牌 | 3 | 4 | 12 | 6 | 8 |
B品牌 | 4 | 3 | 7 | 9 | 5 |
(Ⅰ)若共享单车用户人数超过50万的城市称为“优城”,否则称为“非优城”,据此判断能否有85%的把握认为“优城”和共享单车品牌有关?
(Ⅱ)若不考虑其它因素,为了拓展市场,对A品牌要从这五个城市选择三个城市进行宣传,
(ⅰ)求城市2被选中的概率;
(ⅱ)求在城市2被选中的条件下城市3也被选中的概率.

为了响应党的十九大所提出的教育教学改革,某校启动了数学教学方法的探索,学校将髙一年级部分生源情况基本相同的学生分成甲、乙两个班,每班40人,甲班按原有传统模式教学,乙班实施自主学习模式.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在[50,100],按照区间[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀,



,
(I)完成表格,并判断是否有90%以上的把握认为“数学成绩优秀与教学改革有关”

〔Ⅱ)从乙班[70,80),[80,90),[90,100]分数段中,按分层抽样随机抽取7名学生座谈,
从中选三位同学发言,记来自[80,90)发言的人数为随机变量x,求x的分布列和期望.




(I)完成表格,并判断是否有90%以上的把握认为“数学成绩优秀与教学改革有关”

〔Ⅱ)从乙班[70,80),[80,90),[90,100]分数段中,按分层抽样随机抽取7名学生座谈,
从中选三位同学发言,记来自[80,90)发言的人数为随机变量x,求x的分布列和期望.
某村庄对村内50名老年人、年轻人每年是否体检的情况进行了调查,统计数据如表所示:
已知抽取的老年人、年轻人各25名
(Ⅰ)请完成上面的列联表;
(Ⅱ)试运用独立性检验思想方法,判断能否有99%的把握认为每年是否体检与年龄有关?
附:
,
| 每年体检 | 未每年体检 | 合计 |
老年人 | | 7 | |
年轻人 | 6 | | |
合计 | | | 50 |
已知抽取的老年人、年轻人各25名
(Ⅰ)请完成上面的列联表;
(Ⅱ)试运用独立性检验思想方法,判断能否有99%的把握认为每年是否体检与年龄有关?
附:

![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
共享单车已成为一种时髦的新型环保交通工具,某共享单车公司为了拓展市场,对
,
两个品牌的共享单车在编号分别为1,2,3,4,5的五个城市的用户人数(单位:十万)进行统计,得到数据如下:
(Ⅰ)若共享单车用户人数超过50万的城市称为“优城”,否则称为“非优城”,据此判断能否有
的把握认为“优城”和共享单车品牌有关?
(Ⅱ)若不考虑其它因素,为了拓展市场,对
品牌要从这五个城市选择三个城市进行宣传.
(i)求城市2被选中的概率;
(ii)求在城市2被选中的条件下城市3也被选中的概率.
附:参考公式及数据



城市品牌 | 1 | 2 | 3 | 4 | 5 |
![]() | 3 | 4 | 12 | 6 | 8 |
![]() | 4 | 3 | 7 | 9 | 5 |
(Ⅰ)若共享单车用户人数超过50万的城市称为“优城”,否则称为“非优城”,据此判断能否有

(Ⅱ)若不考虑其它因素,为了拓展市场,对

(i)求城市2被选中的概率;
(ii)求在城市2被选中的条件下城市3也被选中的概率.
附:参考公式及数据
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |

临川一中舞蹈社为了研究男女学生对舞蹈的喜爱程度,随机调查学校110名学生是否喜欢跳舞,由列联表和公式
计算出
,并由此作出结论:“有
的可能性认为学生喜欢跳舞与性别有关”,则
可以为( )




![]() | 0.10 | 0.05 | 0.025 | 0.010 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 |
A.3.565 | B.4.204 | C.5.233 | D.6.842 |

| 支持 | 不支持 | 合计 |
男性市民 | | | 60 |
女性市民 | | 50 | |
合计 | 70 | | 140 |
(1)根据已知数据,把表格数据填写完整;
(2)利用(1)完成的表格数据回答下列问题:
(i)能否在犯错误的概率不超过0.001的前提下认为支持申办足球世界杯与性别有关;
(ii)已知在被调查的支持申办足球世界杯的男性市民中有5位退休老人,其中2位是教师,现从这5位退休老人中随机抽取3人,求至多有1位老师的概率.
附:


![]() | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
某村庄对改村内50名老年人、年轻人每年是否体检的情况进行了调查,统计数据如表所示:
已知抽取的老年人、年轻人各25名.则完成上面的列联表数据错误的是( )
| 每年体检 | 每年未体检 | 合计 |
老年人 | ![]() | 7 | ![]() |
年轻人 | 6 | ![]() | ![]() |
合计 | ![]() | ![]() | 50 |
已知抽取的老年人、年轻人各25名.则完成上面的列联表数据错误的是( )
A.![]() | B.![]() | C.![]() | D.![]() |
现在很多人喜欢自助游,2017年孝感杨店桃花节,美丽的桃花风景和人文景观迎来众多宾客.某调查机构为了了解“自助游”是否与性别有关,在孝感桃花节期间,随机抽取了
人,得如下所示的列联表:
(1)若在
这人中,按性别分层抽取一个容量为
的样本,女性应抽
人,请将上面的列联表补充完整,并据此资料能否在犯错误的概率不超过
前提下,认为赞成“自助游”是与性别有关系?
(2)若以抽取样本的频率为概率,从旅游节大量游客中随机抽取
人赠送精美纪念品,记这
人中赞成“自助游”人数为
,求
的分布列和数学期望.
附:

| 赞成“自助游” | 不赞成“自助游” | 合计 |
男性 | ![]() | | |
女性 | | ![]() | |
合计 | | | ![]() |
(1)若在




(2)若以抽取样本的频率为概率,从旅游节大量游客中随机抽取




附:

![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |