- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- + 统计案例
- 回归分析
- 独立性检验
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
禽流感是家禽养殖业的最大威胁,为检验某种药物预防禽流感的效果,取80只家禽进行对比试验,得到如下丢失数据的列联表:(表中
表示丢失的数据)
工作人员曾记得
(1)求出列联表中数据
的值;
(2)能否在犯错概率不超过0.005的前提下认为药物有效?
下面的临界值表供参考:
(参考公式:
,其中
)

| 患病 | 未患病 | 总计 |
未服用药 | 25 | 15 | 40 |
服用药 | ![]() | ![]() | 40 |
总计 | ![]() | ![]() | 80 |
工作人员曾记得

(1)求出列联表中数据

(2)能否在犯错概率不超过0.005的前提下认为药物有效?
下面的临界值表供参考:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:


近年来我国电子商务行业迎来篷勃发展的新机遇,2016年双11期间,某购物平台的销售业绩高达一千多亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(Ⅰ)请完成如下列联表;

(Ⅱ)是否可以在犯错误的概率不超过0.1%的前提下,认为商品好评与服务好评有关?
(Ⅲ)若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,并从中选择两次交易进行客户回访,求只有一次好评的概率.

(
,其中
)
(Ⅰ)请完成如下列联表;

(Ⅱ)是否可以在犯错误的概率不超过0.1%的前提下,认为商品好评与服务好评有关?
(Ⅲ)若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,并从中选择两次交易进行客户回访,求只有一次好评的概率.

(


某工厂为了对新研发的一种产品进行合理定价,将该定价按事先拟定的价格进行试销,得到如下数据:
(1)求回归直线方程
;
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?
附:
.
单价![]() | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量![]() | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回归直线方程

(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?
附:

随着移动互联网时代的到来,手机的使用非常普遍,“低头族”随处可见。某校为了解家长和教师对学生带手机进校园的态度,随机调查了100位家长和教师,得到情况如下表:
(1)是否有95%以上的把握认为“带手机进校园与身份有关”,并说明理由;
(2)把以上频率当概率,随机抽取3位教师,记其中反对学生带手机进校园的人数为X,求随机变量X的分布列和数学期望.
附:
| 教师 | 家长 |
反对 | 40 | 20 |
支持 | 20 | 20 |
(1)是否有95%以上的把握认为“带手机进校园与身份有关”,并说明理由;
(2)把以上频率当概率,随机抽取3位教师,记其中反对学生带手机进校园的人数为X,求随机变量X的分布列和数学期望.
附:

P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
某高中采取分层抽样的方法从应届高二学生中按照性别抽出20名学生作为样本,其选报文科理科的情况如下表所示.
(Ⅰ)若在该样本中从报考文科的男生和报考理科的女生中随机地选出3人召开座谈会,试求3人中既有男生也有女生的概率;
(Ⅱ)用独立性检验的方法分析有多大的把握认为该中学的高三学生选报文理科与性别有关?(参考公式和数据:χ2
(其中
))
性别 科目 | 男 | 女 |
文科 | 2 | 5 |
理科 | 10 | 3 |
(Ⅰ)若在该样本中从报考文科的男生和报考理科的女生中随机地选出3人召开座谈会,试求3人中既有男生也有女生的概率;
(Ⅱ)用独立性检验的方法分析有多大的把握认为该中学的高三学生选报文理科与性别有关?(参考公式和数据:χ2


对“四地六校”的高二年段学生是爱好体育还是爱好文娱进行调查,共调查了40人,其中男生25人,女生15人;男生中有15人爱好体育,另外10人爱好文娱,女生中有5人爱好体育,另外10人爱好文娱;
(1)根据以上数据制作一个
的列联表;
(2)在多大的程度上可以认为性别与是否爱好体育有关系?
附:
参考数据:
(1)根据以上数据制作一个

(2)在多大的程度上可以认为性别与是否爱好体育有关系?
附:

![]() | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
![]() | 1.323 | 2.072 | 2. 706 | 3. 841 | 5. 024 |
为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组
,第二组
……第五组
,如图是按上述分组方法得到的频率分布直方图,根据有关规定,成绩小于16秒为达标.

(Ⅰ)用样本估计总体,某班有学生45人,设
为达标人数,求
的数学期望与方差;
(Ⅱ)如果男女生使用相同的达标标准,则男女生达标情况如表:
根据表中所给的数据,能否有
的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
附:
.




(Ⅰ)用样本估计总体,某班有学生45人,设


性别是否达标 | 男 | 女 | 合计 |
达标 | ![]() | ![]() | |
不达标 | ![]() | ![]() | |
合计 | | | ![]() |
(Ⅱ)如果男女生使用相同的达标标准,则男女生达标情况如表:
根据表中所给的数据,能否有

![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
附:

为了判断两个分类变量X与Y之间是否有关系,应用独立性检验法算得
的观测值为6,附:临界值表如下:

则下列说法正确的是


则下列说法正确的是
A.有95%的把握认为X与Y有关系 | B.有99%的把握认为X与Y有关系 |
C.有99.5%的把握认为X与Y有关系 | D.有99.9%的把握认为X与Y有关系 |
对于线性回归方程
,下列说法中不正确的是( )

A.![]() | B.当![]() ![]() ![]() ![]() |
C.回归直线必经过点![]() | D.![]() |