- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求回归直线方程
- 最小二乘法的概念及辨析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某个地区计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水的年入流量
(年入流量:一年内上游来水与库区降水之和,单位:十亿立方米)都在4以上,其中,不足8的年份有10年,不低于8且不超过12的年份有35年,超过12的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.
(1)求未来4年中,至多有1年的年入流量超过12的概率;
(2)若水的年入流量
与其蕴含的能量
(单位:百亿万焦)之间的部分对应数据为如下表所示:
用最小二乘法求出
关于
的线性回归方程
;(回归方程系数用分数表示)
(3)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量
限制,并有如下关系:
若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
附:回归方程系数公式:
,
.

(1)求未来4年中,至多有1年的年入流量超过12的概率;
(2)若水的年入流量


年入流量![]() | 6 | 8 | 10 | 12 | 14 |
蕴含的能量![]() | 1.5 | 2.5 | 3.5 | 5 | 7.5 |
用最小二乘法求出



(3)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量

年入流量![]() | ![]() | ![]() | ![]() |
发电机最多可运行台数 | 1 | 2 | 3 |
若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
附:回归方程系数公式:


下面给出了根据我国2012年~2018年水果人均占有量
(单位:
)和年份代码
绘制的散点图(2012年~2018年的年份代码
分别为1~7).

(1)根据散点图分析
与
之间的相关关系;
(2)根据散点图相应数据计算得
,
,求
关于
的线性回归方程.
参考公式:
.





(1)根据散点图分析


(2)根据散点图相应数据计算得




参考公式:

基于移动网络技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,给人们带来新的出行体验,某共享单车运营公司的市场研究人员为了了解公司的经营状况,对公司最近6个月的市场占有率
进行了统计,结果如下表:
(1)请用相关系数说明能否用线性回归模型拟合
与月份代码
之间的关系.如果能,请计算出
关于
的线性回归方程,如果不能,请说明理由;
(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的
型车和800元/辆的
型车中选购一种,两款单车使用寿命频数如下表:
经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型?
参考数据:
,
,
,
.
参考公式:相关系数
,
,
.

月份 | 2018.11 | 2018.12 | 2019.01 | 2019.02 | 2019.03 | 2019.04 |
月份代码![]() | 1 | 2 | 3 | 4 | 5 | 6 |
![]() | 11 | 13 | 16 | 15 | 20 | 21 |
(1)请用相关系数说明能否用线性回归模型拟合




(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的


![]() | 1年 | 2年 | 3年 | 4年 | 总计 |
![]() | 10 | 30 | 40 | 20 | 100 |
![]() | 15 | 40 | 35 | 10 | 100 |
经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型?
参考数据:




参考公式:相关系数



如表是我国2012年至2018年国内生产总值(单位:万亿美元)的数据:
(1)从表中数据可知
和
线性相关性较强,求出以
为解释变量
为预报变量的线性回归方程;
(2)已知美国2018年的国内生产总值约为20.5万亿美元,用(1)的结论,求出我国最早在那个年份才能赶上美国2018年的国内生产总值?
参考数据:
,
参考公式:回归方程
中斜率和截距的最小二乘估计公式分别为:
,
.
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代号![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
国内生产总值![]() (单位:万亿美元) | 8.5 | 9.6 | 10.4 | 11 | 11.1 | 12.1 | 13.6 |
(1)从表中数据可知




(2)已知美国2018年的国内生产总值约为20.5万亿美元,用(1)的结论,求出我国最早在那个年份才能赶上美国2018年的国内生产总值?
参考数据:


参考公式:回归方程



某人经营淡水池塘养草鱼,根据过去
期的养殖档案,该池塘的养殖重量
(百斤)都在
百斤以上,其中不足
百斤的
期,不低于
百斤且不超过
百斤的有
期,超过
百斤的有
期.根据统计,该池塘的草鱼重量的增加量
(百斤)与使用某种饵料的质量
(百斤)之间的关系如图所示.

(1)根据数据可知
与
具有线性相关关系,请建立
关于
的回归方程
;如果此人设想使用某种饵料
百斤时,草鱼重量的增加量须多于
百斤,请根据回归方程计算,确定此方案是否可行?并说明理由.
(2)养鱼的池塘对水质含氧与新鲜度要求较高,故养殖户需设置若干台增氧冲水机,每期养殖使用的冲水机运行台数与鱼塘的鱼重量有关,并有如下关系:
若某台增氧冲水机运行,则该台冲水机每期盈利
千元;若某台冲水机未运行,则该台冲水机每期亏损
千元.以频率作为概率,养殖户欲使每期冲水机总利润的均值达到最大,应安装几台增氧冲水机?
附:对于一组数据
,其回归方程
的斜率和截距的最小二乘估计公式分别为:
,
.













鱼的重量(单位:百斤) | ![]() | ![]() | ![]() |
冲水机运行台数 | 1 | 2 | 3 |
(1)根据数据可知







(2)养鱼的池塘对水质含氧与新鲜度要求较高,故养殖户需设置若干台增氧冲水机,每期养殖使用的冲水机运行台数与鱼塘的鱼重量有关,并有如下关系:
若某台增氧冲水机运行,则该台冲水机每期盈利


附:对于一组数据




某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费
(单位:万元)对年销售量
(单位:
)的影响,对近
年的年宣传费
和年销售量
作了初步统计和处理,得到的数据如下:
,
.

(1)在给定的坐标系中画出表中数据的散点图;
(2)求出
关于
的线性回归方程
;
(3)若公司计划下一年度投入宣传费
万元,试预测年销售量
的值.
参考公式






年宣传费![]() | ![]() | ![]() | ![]() | ![]() |
年销售量![]() ![]() | ![]() | ![]() | ![]() | ![]() |



(1)在给定的坐标系中画出表中数据的散点图;
(2)求出



(3)若公司计划下一年度投入宣传费


参考公式

现有一环保型企业,为了节约成本拟进行生产改造,现将某种产品产量
与单位成本
统计数据如下:
(Ⅰ)试确定回归方程
;
(Ⅱ)指出产量每增加1000件时,单位成本平均下降多少?
(Ⅲ)假定单位成本为70元/件时,产量应为多少件?
(参考公式:
.)
(参考数据
)


月份 | 1 | 2 | 3 | 4 | 5 | 6 |
产量(千件) | 2 | 3 | 4 | 5 | 4 | 5 |
单位成本(元/件) | 73 | 72 | 71 | 73 | 69 | 68 |
(Ⅰ)试确定回归方程

(Ⅱ)指出产量每增加1000件时,单位成本平均下降多少?
(Ⅲ)假定单位成本为70元/件时,产量应为多少件?
(参考公式:

(参考数据


某书店销售刚刚上市的某高二数学单元测试卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如下数据:
(1)求试销
天的销量的方差和
关于
的回归直线方程;
附:
.
(2)预计以后的销售中,销量与单价服从上题中的回归直线方程,已知每册单元测试卷的成本是10元,为了获得最大利润,该单元测试卷的单价应定为多少元?
单价x/元 | 18 | 19 | 20 | 21 | 22 |
销量y/册 | 61 | 56 | 50 | 48 | 45 |
(1)求试销



附:

(2)预计以后的销售中,销量与单价服从上题中的回归直线方程,已知每册单元测试卷的成本是10元,为了获得最大利润,该单元测试卷的单价应定为多少元?
某地区实施“光盘行动”以后,某自助啤酒吧也制定了自己的行动计划,进店的每一位客人需预交
元,啤酒根据需要自己用量杯量取,结账时,根据每桌剩余酒量,按一定倍率收费(如下表),每桌剩余酒量不足
升的,按
升计算(如剩余
升,记为剩余
升).例如:结账时,某桌剩余酒量恰好为
升,则该桌的每位客人还应付
元.统计表明饮酒量与人数有很强的线性相关关系,下面是随机采集的
组数据
(其中
表示饮酒人数,
(升)表示饮酒量):
,
,
,
,
.
(1)求由这
组数据得到的
关于
的回归直线方程;
(2)小王约了
位朋友坐在一桌饮酒,小王及朋友用量杯共量取了
升啤酒,这时,酒吧服务生对小王说,根据他的经验,小王和朋友量取的啤酒可能喝不完,可以考虑再邀请
位或
位朋友一起来饮酒,会更划算.试向小王是否该接受服务生的建议?
参考数据:回归直线的方程是
,其中
,
.
















剩余酒量(单位:升) | ![]() | ![]() | ![]() | ![]() | ![]() ![]() |
结账时的倍率 | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)求由这



(2)小王约了




参考数据:回归直线的方程是



由国家统计局提供的数据可知,2012年至2018年中国居民人均可支配收入
(单位:万元)的数据如下表:
(1)求
关于
的线性回归方程(系数精确到0.01);
(2)利用(1)中的回归方程,分析2012年至2018年中国居民人均可支配收入的变化情况,并预测2019年中国居民人均可支配收入.
附注:参考数据:
,
.
参考公式:回归直线方程
的斜率和截距的最小二乘估计公式分别为:
,
.

年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代号![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均可支配收入![]() | 1.65 | 1.83 | 2.01 | 2.19 | 2.38 | 2.59 | 2.82 |
(1)求


(2)利用(1)中的回归方程,分析2012年至2018年中国居民人均可支配收入的变化情况,并预测2019年中国居民人均可支配收入.
附注:参考数据:


参考公式:回归直线方程


