刷题首页
题库
高中数学
题干
基于移动网络技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,给人们带来新的出行体验,某共享单车运营公司的市场研究人员为了了解公司的经营状况,对公司最近6个月的市场占有率
进行了统计,结果如下表:
月份
2018.11
2018.12
2019.01
2019.02
2019.03
2019.04
月份代码
1
2
3
4
5
6
11
13
16
15
20
21
(1)请用相关系数说明能否用线性回归模型拟合
与月份代码
之间的关系.如果能,请计算出
关于
的线性回归方程,如果不能,请说明理由;
(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的
型车和800元/辆的
型车中选购一种,两款单车使用寿命频数如下表:
车型 报废年限
1年
2年
3年
4年
总计
10
30
40
20
100
15
40
35
10
100
经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型?
参考数据:
,
,
,
.
参考公式:相关系数
,
,
.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-02 09:59:18
答案(点此获取答案解析)
同类题1
已知
的取值如下表所示:从散点图分析,
与
线性相关,且
,则
=__________.
同类题2
某公司在某条商业街分别开有两家业务上有关联的零售商店,这两家商店的日纯利润变化情况如下表所示:
(1)从这几天的日纯利润来看,哪一家商店的日平均纯利润多些?
(2)由表中数据可以认为这两家商店的日纯利润之间有较强的线性相关关系.
(ⅰ)试求
与
之间的线性回归方程;
(ⅱ)预测当
店日纯利润不低于2万元时,
店日纯利润的大致范围(精确到小数点后两位);
(3)根据上述5日内的日纯利润变化情况来看,哪家商店经营状况更好?
附:线性回归方程
中,
,
.
参考数据:
,
.
同类题3
某车间加工零件的数量
与加工时间
的统计数据如表:
零件数
(个)
18
20
22
加工时间
(分)
27
30
33
现已求得上表数据的回归方程
中的
值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为( )
A.84分钟
B.94分钟
C.102分钟
D.112分钟
同类题4
某高级中学在今年“五一”期间给校内所有教室安装了同一型号的空调,关于这批空调的使用年限
单位:年
和所支出的维护费用
单位:千元
厂家提供的统计资料如表:
x
2
4
5
6
8
y
30
40
60
50
70
若
x
与
y
之间是线性相关关系,请求出维护费用
y
关于
x
的线性回归直线方程
;
若规定当维护费用
y
超过
千元时,该批空调必须报度,试根据
的结论求该批空调使用年限的最大值
结果取整数
参考公式:
,
.
同类题5
某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(
元)试销l天,得到如表单价
(元)与销量
(册)数据:
单价
(元)
18
19
20
21
22
销量
(册)
61
56
50
48
45
(l)根据表中数据,请建立
关于
的回归直线方程:
(2)预计今后的销售中,销量
(册)与单价
(元)服从(l)中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?
附:
,
,
,
.
相关知识点
计数原理与概率统计
统计
变量间的相关关系
最小二乘法
求回归直线方程