某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温(°C)与该奶茶店的这种饮料销量(杯),得到如下数据:
日 期
1月11日
1月12日
1月13日
1月14日
1月15日
平均气温(°C)
9
10
12
11
8
销量(杯)
23
25
30
26
21
 
(1)若从这五组数据中随机抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;
(2)请根据所给五组数据,求出y关于x的线性回归方程
(参考公式:.)
当前题号:1 | 题型:解答题 | 难度:0.99
假设某种设备使用的年限(年)与所支出的维修费用(万元)有以下统计资料:
使用年限
2
3
4
5
6
维修费用
2
4
5
6
7
 
若由资料知呈线性相关关系.试求:
(1)求
(2)线性回归方程
(3)估计使用10年时,维修费用是多少?
附:利用“最小二乘法”计算的值时,可根据以下公式:
当前题号:2 | 题型:解答题 | 难度:0.99
某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:

1
2
3
4
5
6
7
8

112
61
44.5
35
30.5
28
25
24
 
根据以上数据,绘制了散点图.

观察散点图,两个变量不具有线性相关关系,现考虑用反比例函数模型和指数函数模型分别对两个变量的关系进行拟合.已求得用指数函数模型拟合的回归方程为的相关系数.
参考数据(其中):








183.4
0.34
0.115
1.53
360
22385.5
61.4
0.135
 
(1)用反比例函数模型求关于的回归方程;
(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.01),并用其估计产量为10千件时每件产品的非原料成本;
(3)该企业采取订单生产模式(根据订单数量进行生产,即产品全部售出).根据市场调研数据,若该产品单价定为100元,则签订9千件订单的概率为0.8,签订10千件订单的概率为0.2;若单价定为90元,则签订10千件订单的概率为0.3,签订11千件订单的概率为0.7.已知每件产品的原料成本为10元,根据(2)的结果,企业要想获得更高利润,产品单价应选择100元还是90元,请说明理由.
参考公式:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为:,相关系数.
当前题号:3 | 题型:解答题 | 难度:0.99
某电子科技公司由于产品采用最新技术,销售额不断增长,最近个季度的销售额数据统计如下表(其中表示年第一季度,以此类推):
季度





季度编号x





销售额y(百万元)





 
(1)公司市场部从中任选个季度的数据进行对比分析,求这个季度的销售额都超过千万元的概率;
(2)求关于的线性回归方程,并预测该公司的销售额.
附:线性回归方程:其中
参考数据:.
当前题号:4 | 题型:解答题 | 难度:0.99
已知变量线性相关,由观测数据算得样本的平均数,线性回归方程中的系数满足,则线性回归方程为(   )
A.B.C.D.
当前题号:5 | 题型:单选题 | 难度:0.99
某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:
年份
2007
2008
2009
2010
2011
2012
2013
年份代号t
1
2
3
4
5
6
7
人均纯收入y
2.9
3.3
3.6
4.4
4.8
5.2
5.9
 
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
当前题号:6 | 题型:解答题 | 难度:0.99
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日期
12月2日
12月3日
12月4日
温差
11
13
12
发芽数(颗)
25
30
26
 
(1)请根据12月2日至12月4日的数据,求出关于的线性回归方程
(2)该农科所确定的研究方案是:先用上面的3组数据求线性回归方程,再选取2组数据进行检验.若12月5日温差为,发芽数16颗,12月6日温差为,发芽数23颗.由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
注:
当前题号:7 | 题型:解答题 | 难度:0.99
为了分析某个高三学生的学习状态.现对他前5次考试的数学成绩x,物理成绩y进行分析.下面是该生前5次考试的成绩.
数学
120
118
116
122
124
物理
79
79
77
82
83
 

已知该生的物理成绩y与数学成绩x是线性相关的,求物理成绩y与数学成绩x的回归直线方程;
我们常用来刻画回归的效果,其中越接近于1,表示回归效果越好.求
已知第6次考试该生的数学成绩达到132,请你估计第6次考试他的物理成绩大约是多少?
当前题号:8 | 题型:解答题 | 难度:0.99
大学生小赵计划利用假期进行一次短期职业体验,已知小赵想去某单位体验,单位领导告知每天上班的时间单位:小时和工资单位:元如下表所示:
时间x
2
3
5
8
9
12
工资y
30
40
60
90
120
140
 
则小赵这段时间每天工资y与每天工作时间x满足的线性回归方程为(   )
A.B.
C.D.
当前题号:9 | 题型:单选题 | 难度:0.99
某老小区建成时间较早,没有集中供暖,随着人们生活水平的日益提高热力公司决定在此小区加装暖气该小区的物业公司统计了近五年(截止2018年年底)小区居民有意向加装暖气的户数,得到如下数据
年份编号x
1
2
3
4
5
年份
2014
2015
2016
2017
2018
加装户数y
34
95
124
181
216
 
(Ⅰ)若有意向加装暖气的户数y与年份编号x满足线性相关关系求yx的线性回归方程并预测截至2019年年底,该小区有多少户居民有意向加装暖气;
(Ⅱ)2018年年底郑州市民生工程决定对老旧小区加装暖气进行补贴,该小区分到120个名额物业公司决定在2019年度采用网络竞拍的方式分配名额,竞拍方案如下:①截至2018年年底已登记在册的居民拥有竞拍资格;②每户至多申请一个名额,由户主在竞拍网站上提出申请并给出每平方米的心理期望报价;③根据物价部门的规定,每平方米的初装价格不得超过300元;④申请阶段截止后,将所有申请居民的报价自高到低排列,排在前120位的业主以其报价成交;⑤若最后出现并列的报价,则认为申请时问在前的居民得到名额,为预测本次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的50位居民进行调查统计了他们的拟报竞价,得到如图所示的频率分布直方图:

(1)求所抽取的居民中拟报竞价不低于成本价180元的人数;
(2)如果所有符合条件的居民均参与竞拍,请你利用样本估计总体的思想预测至少需要报价多少元才能获得名额(结果取整数)
参考公式对于一组数据(x1y1),(x2y2),(x3y3),…(xnyn),其回归直线的斜率和截距的最小二乘估计分别为, 
当前题号:10 | 题型:解答题 | 难度:0.99