- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求回归直线方程
- 最小二乘法的概念及辨析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数
与烧开一壶水所用时间
的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).

表中
.
(1)根据散点图判断,
与
哪一个更适宜作烧水时间
关于开关旋钮旋转的弧度数
的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立
关于
的回归方程;
(3)若旋转的弧度数
与单位时间内煤气输出量
成正比,那么
为多少时,烧开一壶水最省煤气?
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为
.



![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中

(1)根据散点图判断,




(2)根据判断结果和表中数据,建立


(3)若旋转的弧度数



附:对于一组数据



随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流量的需求越来越大.长沙某通信公司为了更好地满足消费者对流量的需求,准备推出一款流量包.该通信公司选了5个城市(总人数、经济发展情况、消费能力等方面比较接近)采用不同的定价方案作为试点,经过一个月的统计,发现该流量包的定价
:(单位:元/月)和购买人数
(单位:万人)的关系如表:
(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合
与
的关系?并指出是正相关还是负相关;
(2)①求出
关于
的回归方程;
②若该通信公司在一个类似于试点的城市中将这款流量包的价格定位25元/ 月,请用所求回归方程预测长沙市一个月内购买该流量包的人数能否超过20 万人.
参考数据:
,
,
.
参考公式:相关系数
,回归直线方程
,其中
,
.


流量包的定价(元/月) | 30 | 35 | 40 | 45 | 50 |
购买人数(万人) | 18 | 14 | 10 | 8 | 5 |
(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合


(2)①求出


②若该通信公司在一个类似于试点的城市中将这款流量包的价格定位25元/ 月,请用所求回归方程预测长沙市一个月内购买该流量包的人数能否超过20 万人.
参考数据:



参考公式:相关系数




为了研究某班学生的脚长
(单位厘米)和身高
(单位厘米)的关系,从该班随机抽取
名学生,根据测量数据的散点图可以看出
与
之间有线性相关关系,设其回归直线方程为
.已知
,
,
.该班某学生的脚长为
,据此估计其身高为( )










A.![]() | B.![]() | C.![]() | D.![]() |
某公司为了解某产品的获利情况,将今年1至7月份的销售收入
(单位:万元)与纯利润
(单位:万元)的数据进行整理后,得到如下表格:
该公司先从这7组数据中选取5组数据求纯利润
关于销售收入
的线性回归方程,再用剩下的2组数据进行检验.假设选取的是2月至6月的数据.
(1)求纯利润
关于销售收入
的线性回归方程(精确到0.01);
(2)若由线性回归方程得到的估计数据与检验数据的误差均不超过0.1万元,则认为得到的线性回归方程是理想的.试问该公司所得线性回归方程是否理想?
参考公式:
,
,
,
;参考数据:
.


月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
销售收入![]() | 13 | 13.5 | 13.8 | 14 | 14.2 | 14.5 | 15 |
纯利润![]() | 3.2 | 3.8 | 4 | 4.2 | 4.5 | 5 | 5.5 |
该公司先从这7组数据中选取5组数据求纯利润


(1)求纯利润


(2)若由线性回归方程得到的估计数据与检验数据的误差均不超过0.1万元,则认为得到的线性回归方程是理想的.试问该公司所得线性回归方程是否理想?
参考公式:





高三学生为了迎接高考,要经常进行模拟考试,锻炼应试能力,某学生从升入高三到高考要参加
次模拟考试,下面是高三第一学期某学生参加
次模拟考试的数学成绩表:
(1)已知该考生的模拟考试成绩
与模拟考试的次数
满足回归直线方程
,若高考看作第
次模拟考试,试估计该考生的高考数学成绩;
(2)把
次模拟考试的成绩单放在五个相同的信封中,从中随机抽取
个信封研究成绩,求抽取的
个信封中恰有
个成绩不等于平均值
的概率.
参考公式:
,
.


模拟考试第![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
考试成绩![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)已知该考生的模拟考试成绩




(2)把





参考公式:


某种产品的广告费支出
与销售额
(单位:百万元)之间有如下对应数据:
根据上表提供的数据,求出
关于
的回归直线方程为
,则
的值为( )


![]() | 2 | 4 | 5 | 6 | 8 |
![]() | 30 | 40 | ![]() | 50 | 70 |
根据上表提供的数据,求出




A.40 | B.50 | C.60 | D.70 |
高三学生为了迎接高考,要经常进行模拟考试,锻炼应试能力,某学生从升入高三到高考要参加10次模拟考试,下面是高三第一学期某学生参加5次模拟考试的数学成绩表:
(1)已知该考生的模拟考试成绩y与模拟考试的次数x满足回归直线方程
,若高考看作第11次模拟考试,试估计该考生的高考数学成绩;
(2)把这5次模拟考试的数学成绩单放在5个相同的信封中,从中随机抽取3份试卷的成绩单进行研究,设抽取考试成绩不等于平均值
的个数为
,求出
的分布列与数学期望.
参考公式:

.
模拟考试第x次 | 1 | 2 | 3 | 4 | 5 |
考试成绩y分 | 90 | 100 | 105 | 105 | 100 |
(1)已知该考生的模拟考试成绩y与模拟考试的次数x满足回归直线方程

(2)把这5次模拟考试的数学成绩单放在5个相同的信封中,从中随机抽取3份试卷的成绩单进行研究,设抽取考试成绩不等于平均值



参考公式:



已知关于某设各的使用年限x(单位:年)和所支出的维修费用y(单位:万元)有如下的统计资料,由上表可得线性回归方程
,若规定当维修费用y>12时该设各必须报废,据此模型预报该设各使用年限的最大值为( )

x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
A.7 | B.8 | C.9 | D.10 |
为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每100颗种子浸泡后的发芽数,得到如下表格:
(Ⅰ)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另3天的数据,求出
关于
的线性回归方程
(Ⅱ)若由线性回归方程得到的估计数据与所选出的两组检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠.
(参考公式,
,
),参考数据
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
温差x/oC | 10 | 11 | 13 | 12 | 8 |
发芽数y/颗 | 23 | 25 | 30 | 26 | 16 |
(Ⅰ)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另3天的数据,求出



(Ⅱ)若由线性回归方程得到的估计数据与所选出的两组检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠.
(参考公式,


