- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- 用样本估计总体
- + 变量间的相关关系
- 相关关系
- 散点图
- 回归直线方程
- 最小二乘法
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
近年来,某地大力发展文化旅游创意产业,创意维护一处古寨,几年来,经统计,古寨的使用年限x(年)和所支出的维护费用y(万元)的相关数据如图所示,根据以往资料显示y对x呈线性相关关系.

(1)求出y关于x的回归直线方程
;
(2)试根据(1)中求出的回归方程,预测使用年限至少为几年时,维护费用将超过10万元?
参考公式:对于一组数据
,
,…,
,其回归方程
的斜率和截距的最小二乘估计分别为
.

(1)求出y关于x的回归直线方程

(2)试根据(1)中求出的回归方程,预测使用年限至少为几年时,维护费用将超过10万元?
参考公式:对于一组数据





已知变量x,y的取值如下表:
由散点图分析可知y与x线性相关,且求得回归直线的方程为
,据此可预测:当
时,y的值约为( )
x | 1 | 2 | 3 | 4 | 5 |
y | 10 | 15 | 30 | 45 | 50 |
由散点图分析可知y与x线性相关,且求得回归直线的方程为


A.63 | B.74 | C.85 | D.96 |
某消费品企业销售部对去年各销售地的居民年收入(即此地所有居民在一年内的收入的总和)及其产品销售额进行抽样分析,收集数据整理如下:

(1)在图a中作出这些数据的散点图,并指出y与x成正相关还是负相关?
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程?
(3)若B地今年的居民年收入将增长20%,预测B地今年的销售额将达到多少万元?
回归方程系数公式:
,
.
参考数据:
,
.
销售地 | A | B | C | D |
年收入x(亿元) | 15 | 20 | 35 | 50 |
销售额y(万元) | 16 | 20 | 40 | 48 |

(1)在图a中作出这些数据的散点图,并指出y与x成正相关还是负相关?
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程?
(3)若B地今年的居民年收入将增长20%,预测B地今年的销售额将达到多少万元?
回归方程系数公式:


参考数据:


已知变量
和
满足相关关系
,变量
和
满足相关关系
.下列结论中正确的是( )






A.![]() ![]() ![]() ![]() | B.![]() ![]() ![]() ![]() |
C.![]() ![]() ![]() | D.![]() ![]() ![]() ![]() |
某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:
为了研究计算的方便,工作人员将上表的数据进行了处理,
得到下表2:
(Ⅰ)求z关于t的线性回归方程;
(Ⅱ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程
,其中
)
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
为了研究计算的方便,工作人员将上表的数据进行了处理,

时间代号t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z关于t的线性回归方程;
(Ⅱ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程


为利于分层教学,某学校根据学生的情况分成了A,B,C三类,经过一段时间的学习后在三类学生中分别随机抽取了1个学生的5次考试成缎,其统计表如下:
A类
,
;
B类
,
;
C类
,
;
(1)经计算己知A,B的相关系数分别为
,
.,请计算出C学生的
的相关系数,并通过数据的分析回答抽到的哪类学生学习成绩最稳定;(结果保留两位有效数字,
越大认为成绩越稳定)
(2)利用(1)中成绩最稳定的学生的样本数据,已知线性回归直线方程为
,利用线性回归直线方程预测该生第十次的成绩.
附相关系数
,线性回归直线方程
,
,
.
A类
第x次 | 1 | 2 | 3 | 4 | 5 |
分数y(满足150) | 145 | 83 | 95 | 72 | 110 |


B类
第x次 | 1 | 2 | 3 | 4 | 5 |
分数y(满足150) | 85 | 93 | 90 | 76 | 101 |


C类
第x次 | 1 | 2 | 3 | 4 | 5 |
分数y(满足150) | 85 | 92 | 101 | 100 | 112 |


(1)经计算己知A,B的相关系数分别为




(2)利用(1)中成绩最稳定的学生的样本数据,已知线性回归直线方程为

附相关系数




若身高x(单位:m)与体重y(单位:kg)之间的回归直线方程为
(
),样本点的中心为
,当身高为1.7m时,预计体重为______kg.



通过市场调查,得到某产品的资金投入
(万元)与获得的利润
(万元)的数据,如下表所示:
(1)画出数据对应的散点图
(2)根据上表提供的数据,用最小二乘法求线性回归直线方程
;
(3)现投入资金
(万元),求估计获得的利润为多少万元.


资金投入![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
利润![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)画出数据对应的散点图
(2)根据上表提供的数据,用最小二乘法求线性回归直线方程

(3)现投入资金
