- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- + 极差、方差、标准差
- 计算几个数据的极差、方差、标准差
- 根据方差、标准差求参数
- 各数据同时加减同一数对方差的影响
- 各数据同时乘除同一数对方差的影响
- 用方差、标准差说明数据的波动程度
- 估计总体的方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下列说法正确的是 ( )
A.已知购买一张彩票中奖的概率为![]() ![]() |
B.互斥事件一定是对立事件; |
C.如图,直线![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
D.若样本![]() ![]() ![]() ![]() |
设a,b,c是正整数,且a∈[70,80),b∈[80,90),c∈[90,100],当数据a,b,c的方差最小时,a+b+c的值为
A.252或253 | B.253或254 | C.254或255 | D.267或268 |
如图4所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中
的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以
表示.
已知甲、乙两个小组的数学成绩的平均分相同.

(1)求
的值;
(2)求乙组四名同学数学成绩的方差;
(3)分别从甲、乙两组同学中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为
,求随机变量
的分布列和均值(数学期望).
的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以

已知甲、乙两个小组的数学成绩的平均分相同.

(1)求

(2)求乙组四名同学数学成绩的方差;
(3)分别从甲、乙两组同学中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为


某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:
则以上两组数据的方差中较小的一个为
= ▲ .
学生 | 1号 | 2号 | 3号 | 4号 | 5号 |
甲班 | 6 | 7 | 7 | 8 | 7 |
乙班 | 6 | 7 | 6 | 7 | 9 |
则以上两组数据的方差中较小的一个为

一组数据中每个数据都减去80构成一组新数据,则这组新数据的平均数是
,方差是
,则原来一组数的方差为( )


A.3.2 | B.4.4 | C.4.8 | D.5.6 |