- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- + 极差、方差、标准差
- 计算几个数据的极差、方差、标准差
- 根据方差、标准差求参数
- 各数据同时加减同一数对方差的影响
- 各数据同时乘除同一数对方差的影响
- 用方差、标准差说明数据的波动程度
- 估计总体的方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某市为了争创“全国文明城市”,市文明委组织了精神文明建设知识竞赛. 统计局调查中心随机抽取了甲、乙两队中各6名组员的成绩,得分情况如下表所示:
(1)根据表中的数据,哪个组对精神文明建设知识的掌握更为稳定?
(2)用简单随机抽样方法从乙组6名成员中抽取两名,他们的得分情况组成一个样本,求抽出的两名成员的分数差值至少是4分的概率.
甲组 | 84 | 85 | 87 | 88 | 88 | 90 |
乙组 | 82 | 86 | 87 | 88 | 89 | 90 |
(1)根据表中的数据,哪个组对精神文明建设知识的掌握更为稳定?
(2)用简单随机抽样方法从乙组6名成员中抽取两名,他们的得分情况组成一个样本,求抽出的两名成员的分数差值至少是4分的概率.
甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表
、
、
分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有
甲的成绩 | | 乙的成绩 | | 丙的成绩 | ||||||||||||
环数 | 7 | 8 | 9 | 10 | 环数 | 7 | 8 | 9 | 10 | 环数 | 7 | 8 | 9 | 10 | ||
频数 | 5 | 5 | 5 | 5 | 频数 | 6 | 4 | 4 | 6 | 频数 | 4 | 6 | 6 | 4 |



A.![]() | B.![]() |
C.![]() | D.![]() |
(本小题满分12分)贵广高速铁路自贵阳北站起,经黔南州、黔东南、广西桂林、贺州、广东肇庆、佛山终至广州南站. 其中广东省内有怀集站、广宁站、肇庆东站、三水南站、佛山西站、广州南站共6个站. 记者对广东省内的6个车站的外观进行了满意度调查,得分情况如下:
已知6个站的平均得分为75分.
(1)求广州南站的满意度得分x,及这6个站满意度得分的标准差;
(2)从广东省内前5个站中,随机地选2个站,求恰有1个站得分在区间(68,75)中的概率.
车站 | 怀集站 | 广宁站 | 肇庆东站 | 三水南站 | 佛山西站 | 广州南站 |
满意度得分 | 70 | 76 | 72 | 70 | 72 | x |
已知6个站的平均得分为75分.
(1)求广州南站的满意度得分x,及这6个站满意度得分的标准差;
(2)从广东省内前5个站中,随机地选2个站,求恰有1个站得分在区间(68,75)中的概率.
(本小题满分12分)汽车是碳排放量比较大的行业之一,某地规定,从
年开始,将对二氧化碳排放量超过
的轻型汽车进行惩罚性征税.检测单位对甲.乙两品牌轻型汽车各抽取
辆进行二氧化碳排放量检测,记录如下(单位:
).

经测算得乙品牌轻型汽车二氧化碳排放量的平均值为
.
(1)求表中
的值,并比较甲.乙两品牌轻型汽车二氧化碳排放量的稳定性;
(2)从被检测的
辆甲品牌轻型汽车中任取
辆,则至少有一辆二氧化碳排放量超过
的概率是多少?






经测算得乙品牌轻型汽车二氧化碳排放量的平均值为


(1)求表中

(2)从被检测的




(本小题满分12分)
某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:
(Ⅰ)从统计数据看,甲乙两个班哪个班成绩更稳定(用数据说明)?
(Ⅱ) 若把上表数据作为学生投篮命中率,规定两个班级的1号和2号两名同学分别代表自己的班级参加比赛,每人投篮一次,将甲、乙两个班两名同学投中的次数之和分别记作
和
,试求
和
的分布列和数学期望.
某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:
学生 | 1号 | 2号 | 3号 | 4号 | 5号 |
甲班 | 6 | 5 | 7 | 9 | 8 |
乙班 | 4 | 8 | 9 | 7 | 7 |
(Ⅰ)从统计数据看,甲乙两个班哪个班成绩更稳定(用数据说明)?
(Ⅱ) 若把上表数据作为学生投篮命中率,规定两个班级的1号和2号两名同学分别代表自己的班级参加比赛,每人投篮一次,将甲、乙两个班两名同学投中的次数之和分别记作









假设所有病人的康复时间互相独立,从




人记为乙.
(Ⅰ)求甲的康复时间不少于14天的概率;
(Ⅱ)如果

(Ⅲ)当


