- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- + 极差、方差、标准差
- 计算几个数据的极差、方差、标准差
- 根据方差、标准差求参数
- 各数据同时加减同一数对方差的影响
- 各数据同时乘除同一数对方差的影响
- 用方差、标准差说明数据的波动程度
- 估计总体的方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲、乙两个城市2017年夏季连续5天中,每天的最高气温(
)数据如下:
则这5 天中,每天最高气温较为稳定(方差较小)的城市为_______. (填甲或乙).

城市 | 每天的最高气温 | ||||
第1天 | 第2天 | 第3天 | 第4天 | 第5天 | |
甲 | 28 | 31 | 27 | 33 | 31 |
乙 | 25 | 26 | 29 | 34 | 36 |
则这5 天中,每天最高气温较为稳定(方差较小)的城市为_______. (填甲或乙).
在某次测量中得到的
样本数据如下:82,84,84,86,86,86,88,88,88,88,若
样本数据恰好是
样本数据每个都加2后所得数据,则
两样本的数字特征(众数、中位数、平均数、方差)对应相同的是__________.




下列四个命题:
①样本方差反映的是所有样本数据与样本平均值的偏离程度;
②某只股票经历了l0个跌停(每次跌停,即下跌l0%)后需再经过10个涨停(每次涨停,即上涨10%)
就可以回到原来的净值;
③某校高三一级部和二级部的人数分别是m、n,本次期末考试两级部;数学平均分分别是a、b,则这两
个级部的数学平均分为
④某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查,现将800
名学生从001到800进行编号,已知从497--512这16个数中取得的学生编号是503,则初始在第1小组
00l~016中随机抽到的学生编号是007.
其中真命题的个数是( )
①样本方差反映的是所有样本数据与样本平均值的偏离程度;
②某只股票经历了l0个跌停(每次跌停,即下跌l0%)后需再经过10个涨停(每次涨停,即上涨10%)
就可以回到原来的净值;
③某校高三一级部和二级部的人数分别是m、n,本次期末考试两级部;数学平均分分别是a、b,则这两
个级部的数学平均分为

④某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查,现将800
名学生从001到800进行编号,已知从497--512这16个数中取得的学生编号是503,则初始在第1小组
00l~016中随机抽到的学生编号是007.
其中真命题的个数是( )
A.0个 | B.1个 | C.2个 | D.3个 |
对某同学的7次数学测试成绩进行统计,作出的茎叶图如图所示,给出关于该同学数学成绩的以下说法:

①中位数为84;②众数为83;
③平均数为85;④极差为16;
其中,正确说法的序号是__________.

①中位数为84;②众数为83;
③平均数为85;④极差为16;
其中,正确说法的序号是__________.
甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:

(Ⅰ)请填写下表(写出计算过程):

(Ⅱ)从下列三个不同的角度对这次测试结果进行分析;
①从平均数和方差相结合看(分析谁的成绩更稳定);
②从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);
③从折线图上两人射击命中环数的走势看(分析谁更有潜力)

(Ⅰ)请填写下表(写出计算过程):

(Ⅱ)从下列三个不同的角度对这次测试结果进行分析;
①从平均数和方差相结合看(分析谁的成绩更稳定);
②从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);
③从折线图上两人射击命中环数的走势看(分析谁更有潜力)
某射手在一次训练中五次射击的成绩分别为9.4,9.4,9.4,9.6,9.7,则该射手五次射击的成绩的方差是 ( )
A.0.127 | B.0.016 | C.0.08 | D.0.216 |