- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- + 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()


A.2,5 | B.5,5 | C.5,8 | D.8,8 |
甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.得到甲、乙两位学生成绩的茎叶图.

现要从中选派一人参加数学竞赛,对预赛成绩的平均值和方差进行分析,你认为哪位学生的成绩更稳定?请说明理由;

现要从中选派一人参加数学竞赛,对预赛成绩的平均值和方差进行分析,你认为哪位学生的成绩更稳定?请说明理由;
甲、乙两位同学在高三的5次月考中数学成绩用茎叶图表示如右图所示,若甲、乙两人的平均成绩分别是
,
,则下列叙述正确的是()




A.![]() | B.![]() |
C.![]() | D.![]() |
甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图所示,
分别表示甲、乙两名运动员这项测试成绩的平均数,
分别表示甲、乙两名运动员这项测试成绩的方差,则有( )




A.![]() |
B.![]() |
C.![]() |
D.![]() |
某市准备引进优秀企业进行城市建设. 城市的甲地、乙地分别对5个企业(共10个企业)进行综合评估,得分情况如茎叶图所示.

(1)根据茎叶图,求乙地对企业评估得分的平均值和方差;
(2)规定得分在85分以上为优秀企业,若从甲、乙两地准备引进的优秀企业中各随机选取1个,求这两个企业得分的差的绝对值不超过5分的概率.(参考公式:样本数据x1,x2,…,xn的方差:
,其中
为样本平均数)

(1)根据茎叶图,求乙地对企业评估得分的平均值和方差;
(2)规定得分在85分以上为优秀企业,若从甲、乙两地准备引进的优秀企业中各随机选取1个,求这两个企业得分的差的绝对值不超过5分的概率.(参考公式:样本数据x1,x2,…,xn的方差:


某中学高三(2)班甲、乙两名同学自高中以来每次考试成绩的茎叶图如图,下列说法正确的是( )


A.乙同学比甲同学发挥的稳定,且平均成绩也比甲同学高 |
B.乙同学比甲同学发挥的稳定,但平均成绩不如甲同学高 |
C.甲同学比乙同学发挥的稳定,且平均成绩也比乙同学高 |
D.甲同学比乙同学发挥的稳定,但平均成绩不如乙同学高 |
某技校开展技能大赛,甲、乙两班各选取5名学生加工某种零件,在4个小时内每名学生加工的合格零件数的统计数据的茎叶图如图所示,已知甲班学生在4个小时内加工的合格零件数的平均数为21,乙班学生在4个小时内加工的合格零件数的平均数不低于甲班的平均数.

(1)求
的值;
(2)分别求出甲、乙两班学生在4个小时内加工的合格零件数的方差
和
,并由此比较两班学生的加工水平的稳定性.

(1)求

(2)分别求出甲、乙两班学生在4个小时内加工的合格零件数的方差


某单位40岁以上的女性职工共有60人,为了调查一下体重和年龄的关系,将这60人随机按1~60编号,用系统抽样的方法从中抽取10人,测量一下体重.
(1)若被抽出的号码其中一个为7,则最后被抽出的号码是多少?
(2)被抽取的10个人的体重(单位:
),用茎叶图表示如图,求这10人体重的中位数与平均数;

(3)从这10个人中体重超过
的人中随机抽取2人,参加健康指导培训,求体重为
的人被抽到的概率.
(1)若被抽出的号码其中一个为7,则最后被抽出的号码是多少?
(2)被抽取的10个人的体重(单位:


(3)从这10个人中体重超过


为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:

①甲地该月14时的平均气温低于乙地该月14时的平均气温;
②甲地该月14时的平均气温高于乙地该月14时的平均气温;
③甲地该月14时的平均气温的标准差小于乙地该月14时的平均气温的标准差;
④甲地该月14时的平均气温的标准差大于乙地该月14时的平均气温的标准差,
其中根据茎叶图能得到的统计结论的编号为( )

①甲地该月14时的平均气温低于乙地该月14时的平均气温;
②甲地该月14时的平均气温高于乙地该月14时的平均气温;
③甲地该月14时的平均气温的标准差小于乙地该月14时的平均气温的标准差;
④甲地该月14时的平均气温的标准差大于乙地该月14时的平均气温的标准差,
其中根据茎叶图能得到的统计结论的编号为( )
A.①③ | B.①④ | C.②③ | D.②④ |