- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- + 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均为16.8,则
的值为( )



A.7 | B.10 | C.13 | D.16 |
海水稻就是耐盐碱水稻,是一种介于野生稻和栽培稻之间的普遍生长在海边滩涂地区的水稻,具有抗旱抗涝、抗病虫害、抗倒伏抗盐碱等特点.近年来,我国的海水稻研究取得了阶段性成果,目前已开展了全国大范围试种.某农业科学研究所分别抽取了试验田中的海水稻以及对照田中的普通水稻各
株,测量了它们的根系深度(单位:
),得到了如下的茎叶图,其中两竖线之间表示根系深度的十位数,两边分别是海水稻和普通水稻根系深度的个位数,则下列结论中不正确的是( )




A.海水稻根系深度的中位数是![]() |
B.普通水稻根系深度的众数是![]() |
C.海水稻根系深度的平均数大于普通水稻根系深度的平均数 |
D.普通水稻根系深度的方差小于海水稻根系深度的方差 |
甲、乙两名同学在5次数学考试中,成绩统计用茎叶图表示如图所示,若甲、乙两人的平均成绩分别用
、
表示,则下列结论正确的是( )




A.![]() | B.![]() |
C.![]() | D.![]() |







(Ⅰ)求这

(Ⅱ)从这




(Ⅲ)以



为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:
①甲地该月14时的平均气温低于乙地该月14时的平均气温;
②甲地该月14时的平均气温高于乙地该月14时的平均气温;
③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;
④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.
其中根据茎叶图能得到的统计结论的标号为( )

①甲地该月14时的平均气温低于乙地该月14时的平均气温;
②甲地该月14时的平均气温高于乙地该月14时的平均气温;
③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;
④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.
其中根据茎叶图能得到的统计结论的标号为( )

A.①③ | B.①④ | C.②③ | D.②④ |
某企业为了解某产品的销售情况,选择某个电商平台对该产品销售情况作调查.统计了一年内的月销售数量(单位:万件),得到该电商平台月销售数量的茎叶图.

(1)求该电商平台在这一年内月销售该产品数量的中位数和平均数;
(2)该企业与电商签订销售合同时规定:如果电商平台当月的销售件数不低于40万件,当月奖励该电商平台10万元;大于等于30万件且小于40万件,当月奖励该电商平台5万元;当月低于30万件没有奖励,用该样本估计总体,从电商平台一个年度内任取两个月,记这两个月企业发给电商平台的奖金为万元,求
的分布列.

(1)求该电商平台在这一年内月销售该产品数量的中位数和平均数;
(2)该企业与电商签订销售合同时规定:如果电商平台当月的销售件数不低于40万件,当月奖励该电商平台10万元;大于等于30万件且小于40万件,当月奖励该电商平台5万元;当月低于30万件没有奖励,用该样本估计总体,从电商平台一个年度内任取两个月,记这两个月企业发给电商平台的奖金为万元,求

某学校为了解学生的数学学习情况,从甲、乙两班各抽取了7名同学某次数学考试的成绩,绘制成如图所示的茎叶图,则这两组数据不同的是( )


A.平均数 | B.方差 | C.中位数 | D.极差 |
如图所示的茎叶图记录了甲、乙两名篮球运动员在某几场比赛的得分.已知甲得分的中位数为17,乙得分的均平数为14,则式子
的值是( )



A.7 | B.9 |
C.10 | D.12 |
甲、乙两名运动员,在某项测试中的8次成绩如茎叶图所示,
分别表示甲、乙两名运动员这项测试成绩的平均数,
,
分别表示甲、乙两名运动员这项测试成绩的标准差,则有( )





A.![]() | B.![]() |
C.![]() | D.![]() |