- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- + 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在
,
,
,
,
,
(单位:克)中,经统计的频率分布直方图如图所示.

(1)估计这组数据平均数;
(2)现按分层抽样从质量为
,
的芒果中随机抽取5个,再从这5个中随机抽取2个,求这2个芒果都来自同一个质量区间的概率;
(3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总计,该种植园中还未摘下的芒果大约还有10000个,经销商提出以下两种收购方案:
方案①:所有芒果以9元/千克收购;
方案②:对质量低于250克的芒果以2元/个收购,对质量高于或等于250克的芒果以3元/个收购.
通过计算确定种植园选择哪种方案获利更多.







(1)估计这组数据平均数;
(2)现按分层抽样从质量为


(3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总计,该种植园中还未摘下的芒果大约还有10000个,经销商提出以下两种收购方案:
方案①:所有芒果以9元/千克收购;
方案②:对质量低于250克的芒果以2元/个收购,对质量高于或等于250克的芒果以3元/个收购.
通过计算确定种植园选择哪种方案获利更多.
某花卉经销商销售某种鲜花,售价为每支5元,成本为每支2元.销售宗旨是当天进货当天销售.当天未售出的当垃圾处理.根据以往的销售情况,按



进行分组,得到如图所示的频率分布直方图.

(1)根据频率分布直方图计算该种鲜花日需求量的平均数
,同一组中的数据用该组区间中点值代表;
(2)该经销商某天购进了400支这种鲜花,假设当天的需求量为x枝,
,利润为y元,求
关于
的函数关系式,并结合频率分布直方图估计利润
不小于800元的概率.






(1)根据频率分布直方图计算该种鲜花日需求量的平均数

(2)该经销商某天购进了400支这种鲜花,假设当天的需求量为x枝,




某宠物商店对30只宠物狗的体重(单位:千克)作了测量,并根据所得数据画出了频率分布直方图如下图所示,则这30只宠物狗体重(单位:千克)的平均值大约为( )


A.15.5 | B.15.6 | C.15.7 | D.16 |
某校高二(20)班共50名学生,在期中考试中,每位同学的数学考试分数都在区间
内,将该班所有同学的考试分数分为七个组:
,
,
,
,
,
,
,绘制出频率分布直方图如图所示.

(1)根据频率分布直方图,估计这次考试学生成绩的中位数和平均数;
(2)已知成绩为104分或105分的同学共有3人,现从成绩在
中的同学中任选2人,则至少有1人成绩不低于106分的概率为多少?(每位同学的成绩都为整数)









(1)根据频率分布直方图,估计这次考试学生成绩的中位数和平均数;
(2)已知成绩为104分或105分的同学共有3人,现从成绩在

从某保险公司的推销员中随机抽取50名,统计这些推销员某月的月销售额(单位:千元),由统计结果得如图频数分别表:

(1)作出这些数据的频率分布直方图;
(2)估计这些推销员的月销售额的平均数(同一组中的数据用该组区间的中点作代表);
(3)根据以上抽样调查数据,公司将推销员的月销售指标确定为17.875千元,试判断是否有60%的职工能够完成该销售指标.
月销售额 分组 | [12.25,14.75) | [14.75,17.25) | [17.25,19.75) | [19.75,22.25) | [22.25,24.75) |
频数 | 4 | 10 | 24 | 8 | 4 |

(1)作出这些数据的频率分布直方图;
(2)估计这些推销员的月销售额的平均数(同一组中的数据用该组区间的中点作代表);
(3)根据以上抽样调查数据,公司将推销员的月销售指标确定为17.875千元,试判断是否有60%的职工能够完成该销售指标.
某高速公路移动雷达测速检测车在某时段对某段路过往的400辆汽车的车速进行检测,根据检测的结果绘制出如图所示的频率分布直方图,根据直方图的数据估计400辆汽车的平均时速为__________.

某校100名高二学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:
,
,
,
,
.

(Ⅰ)求图中
的值;
(Ⅱ)根据频率分布直方图,估计这100名学生语文成绩的平均分.






(Ⅰ)求图中

(Ⅱ)根据频率分布直方图,估计这100名学生语文成绩的平均分.
某校参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩分成六段
、
、
、
后得到如图部分频率分布直方图,观察图形的信息,回答下列问题:

求分数在
内的频率,并补全这个频率分布直方图;
统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
若从60名学生中随抽取2人,抽到的学生成绩在
记0分,在
记1分,在
记2分,用
表示抽取结束后的总记分,求
的分布列和数学期望.













