- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- + 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2018年9月16日下午5时左右,今年第22号台风“山竹”在广东江门川岛镇附近正面登陆,给当地人民造成了巨大的财产损失,某记者调查了当地某小区的100户居民由于台风造成的经济损失,将收集的数据分成
,
,
,
,
五组,并作出如下频率分布直方图.

(Ⅰ)根据频率分布直方图估计该小区居民由于台风造成的经济损失的众数和平均值.
(Ⅱ)“一方有难,八方支援”,台风后居委会号召小区居民为台风重灾区捐款,
记者调查的100户居民捐款情况如下表格,在如图表格空白处填写正确数字,并说明是否有99%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?

参考公式:
,其中






(Ⅰ)根据频率分布直方图估计该小区居民由于台风造成的经济损失的众数和平均值.
(Ⅱ)“一方有难,八方支援”,台风后居委会号召小区居民为台风重灾区捐款,


参考公式:


![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
2018年9月16日下午5时左右,今年第22号台风“山竹”在广东江门川岛镇附近正面登陆,给当地人民造成了巨大的财产损失,某记者调查了当地某小区的100户居民由于台风造成的经济损失,将收集的数据分成
,
,
,
,
五组,并作出如下频率分布直方图.

(Ⅰ)根据频率分布直方图估计该小区居民由于台风造成的经济损失的众数和平均值.
(Ⅱ)“一方有难,八方支援”,台风后居委会号召小区居民为台风重灾区捐款,
记者调查的100户居民捐款情况如下表格,在表格空白处填写正确数字,并说明是否有99%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?

(Ⅲ)将上述调查所得到的频率视为概率,现在从该地区大量受灾居民中,采用随机抽样方法每次抽取1户居民,抽取3次,记被抽取的3户居民中自身经济损失超过
元的人数为
,若每次抽取的结果是相互独立的,求
的分布列及期望
.
参考公式:
,其中






(Ⅰ)根据频率分布直方图估计该小区居民由于台风造成的经济损失的众数和平均值.
(Ⅱ)“一方有难,八方支援”,台风后居委会号召小区居民为台风重灾区捐款,


(Ⅲ)将上述调查所得到的频率视为概率,现在从该地区大量受灾居民中,采用随机抽样方法每次抽取1户居民,抽取3次,记被抽取的3户居民中自身经济损失超过




参考公式:


![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
某高校数学与统计学院为了对2018年录取的大一新生有针对性地进行教学.从大一新生中随机抽取40名,对他们在2018年高考的数学成绩进行调查,统计发现40名新生的数学分数
分布在
内.当
时,其频率
.
(Ⅰ)求
的值;
(Ⅱ)请在答题卡中画出这40名新生高考数学分数的频率分布直方图,并估计这40名新生的高考数学分数的平均数;

(Ⅲ)从成绩在100~120分的学生中,用分层抽样的方法从中抽取5名学生,再从这5名学生中随机选两人甲、乙,记甲、乙的成绩分别为
,求概率
.




(Ⅰ)求

(Ⅱ)请在答题卡中画出这40名新生高考数学分数的频率分布直方图,并估计这40名新生的高考数学分数的平均数;

(Ⅲ)从成绩在100~120分的学生中,用分层抽样的方法从中抽取5名学生,再从这5名学生中随机选两人甲、乙,记甲、乙的成绩分别为


某校100名学生期中考试数学成绩的频率分布直方图如图.

(1)求图中
的值;
(2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;
(3)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率.

(1)求图中

(2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;
(3)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率.
青少年“心理健康”问题越来越引起社会关注,某校对高一600名学生进行了一次“心理健康”知识测试,并从中抽取了部分学生的成绩(得分取正整数,满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图。
(1)填写答题卡频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;
(2)请你估算学生成绩的平均数及中位数。
分组 | 频数 | 频率 |
[50,60) | 2 | 0.04 |
[60,70) | 8 | 0.16 |
[70,80) | 10 | |
[80,90) | | |
[90,100] | 14 | 0.28 |
合计 | | 1.00 |

(1)填写答题卡频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;
(2)请你估算学生成绩的平均数及中位数。
未了解人们对“延迟退休年龄政策”的态度,某部门从年龄在15岁到65岁的人群中随机调查了100人,将这100人的年龄数据分成5组:
,
,
,
,
,整理得到如图所示的频率分布直方图.

在这100人中不支持“延迟退休”的人数与年龄的统计结果如下:
(1)由频率分布直方图,估计这100人年龄的平均数;
(2)由频率分布直方图,若在年龄
,
,
的三组内用分层抽样的方法抽取12人做问卷调查,求年龄在
组内抽取的人数;
(3)根据以上统计数据填写下面的
列联表,据此表,能否在犯错误的概率不超过5%的前提下,认为以45岁为分界点的不同人群对“延迟退休年龄政策”的不支持态度存在差异?
附:
,其中
.
参考数据:






在这100人中不支持“延迟退休”的人数与年龄的统计结果如下:
年龄 | ![]() | ![]() | ![]() | ![]() | ![]() |
不支持“延迟退休”的人数 | 15 | 5 | 15 | 23 | 17 |
(1)由频率分布直方图,估计这100人年龄的平均数;
(2)由频率分布直方图,若在年龄




(3)根据以上统计数据填写下面的

\ | 45岁以下 | 45岁以上 | 总计 |
不支持 | | | |
支持 | | | |
总计 | | | |
附:


参考数据:
![]() | 0.100 | 0.050 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |
每年3月21日是世界睡眠日,良好的睡眠状况是保持身体健康的重要基础.为了做好今年的世界睡眠日宣传工作,某社区从本辖区内同一年龄层次的人员中抽取了100人,通过问询的方式得到他们在一周内的睡眠时间(单位:小时),并绘制出如右的频率分布直方图:

(Ⅰ)求这100人睡眠时间的平均数
(同一组数据用该组区间的中点值代替,结果精确到个位);
(Ⅱ)由直方图可以认为,人的睡眠时间
近似服从正态分布
,其中
近似地等于样本平均数
,
近似地等于样本方差
,
.假设该辖区内这一年龄层次共有10000人,试估计该人群中一周睡眠时间位于区间(39.2,50.8)的人数.
附:
.若随机变量
服从正态分布
,则
,
.

(Ⅰ)求这100人睡眠时间的平均数

(Ⅱ)由直方图可以认为,人的睡眠时间







附:





某医药公司研发一种新的保健产品,从生产的一批产品中抽取200盒作为样本,测量产品的一项质量指标值,该指标值越高越好.由测量结果得到如下频率分布直方图:

(Ⅰ)求
,并试估计这200盒产品的该项指标的平均值;
(Ⅱ)国家有关部门规定每盒产品该项指标值不低于150均为合格,且按指标值的从低到高依次分为:合格、优良、优秀三个等级,其中
为优良,不高于185为合格,不低于215为优秀.用样本的该项质量指标值的频率代替产品的该项质量指标值的概率.
①求产品该项指标值的优秀率;
②现从这批产品中随机抽取3盒,求其中至少有1盒该项质量指标值为优秀的概率.

(Ⅰ)求

(Ⅱ)国家有关部门规定每盒产品该项指标值不低于150均为合格,且按指标值的从低到高依次分为:合格、优良、优秀三个等级,其中

①求产品该项指标值的优秀率;
②现从这批产品中随机抽取3盒,求其中至少有1盒该项质量指标值为优秀的概率.
随着“互联网+交通”模式的迅猛发展,“共享助力单车”在很多城市相继出现.某“共享助力单车”运营公司为了解某地区用户对该公司所提供的服务的满意度,随机调查了100名用户,得到用户的满意度评分,现将评分分为5组,如下表:
(1)求表格中的a,b,c的值;
(2)估计用户的满意度评分的平均数;
(3)若从这100名用户中随机抽取25人,估计满意度评分低于6分的人数为多少?
组别 | 一 | 二 | 三 | 四 | 五 |
满意度评分 | [0,2) | [2,4) | [4,6) | [6,8) | [8,10] |
频数 | 5 | 10 | a | 32 | 16 |
频率 | 0.05 | b | 0.37 | c | 0.16 |
(1)求表格中的a,b,c的值;
(2)估计用户的满意度评分的平均数;
(3)若从这100名用户中随机抽取25人,估计满意度评分低于6分的人数为多少?
某医药公司研发一种新的保健产品,从一批产品中抽取200盒作为样本,测量产品的一项质量指标值,该指标值越高越好.由测量结果得到如下频率分布直方图:

(Ⅰ)求
,并试估计这200盒产品的该项指标的平均值;
(Ⅱ)① 用样本估计总体,由频率分布直方图认为产品的质量指标值
服从正态分布
,计算该批产品指标值落在
上的概率;参考数据:附:若
,则
,
.
②国家有关部门规定每盒产品该项指标不低150均为合格,且按指标值的从低到高依次分为:合格、优良、优秀三个等级,其中
为优良,不高于180为合格,不低于220为优秀,在①的条件下,设公司生产该产品1万盒的成本为15万元,市场上每盒该产品的等级售价(单位:元)如图表,求该公司每万盒的平均利润.

(Ⅰ)求

(Ⅱ)① 用样本估计总体,由频率分布直方图认为产品的质量指标值






②国家有关部门规定每盒产品该项指标不低150均为合格,且按指标值的从低到高依次分为:合格、优良、优秀三个等级,其中

等级 | 合格 | 优良 | 优秀 |
价格 | 10 | 20 | 30 |