- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- + 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了了解某学校高三年级学生的数学成绩,从中抽取
名学生的数学成绩(百分制)作为样本,按成绩分成
组:
,
,
,
,
,频率分布直方图如图所示.成绩落在
中的人数为
.

(Ⅰ)求
和
的值;
(Ⅱ)根据样本估计总体的思想,估计该校高三年级学生数学成绩的平均数
和中位数
;
(Ⅲ)成绩在
分以上(含
分)为优秀,样本中成绩落在
中的男、女生人数比为
,成绩落在
中的男、女生人数比为
,完成
列联表,并判断是否有
的把握认为数学成绩优秀与性别有关.
参考公式和数据:
.










(Ⅰ)求


(Ⅱ)根据样本估计总体的思想,估计该校高三年级学生数学成绩的平均数


(Ⅲ)成绩在








参考公式和数据:

![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
| 男生 | 女生 | 合计 |
优秀 | | | |
不优秀 | | | |
合计 | | | |
某学校为了解高三复习效果,从高三第一学期期中考试成绩中随机抽取50名考生的数学成绩,分成6组制成频率分布直方图如图所示:

(1)求
的值及这50名同学数学成绩的平均数
;
(2)该学校为制定下阶段的复习计划,从成绩在
的同学中选出3位作为代表进行座谈,若已知成在
的同学中男女比例为2:1,求至少有一名女生参加座谈的概率.

(1)求


(2)该学校为制定下阶段的复习计划,从成绩在


从某校高中男生中随机选取100名学生,将他们的体重(单位:
)数据绘制成频率分布直方图,如图所示.

(1)估计该校的100名同学的平均体重(同一组数据以该组区间的中点值作代表);
(2)若要从体重在
,
内的两组男生中,用分层抽样的方法选取5人,再从这5人中随机抽取3人,记体重在
内的人数为
,求其分布列和数学期望
.


(1)估计该校的100名同学的平均体重(同一组数据以该组区间的中点值作代表);
(2)若要从体重在





银川一中从高二年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六组:
后得到如图的频率分布直方图.

(1)求图中实数
的值;
(2)试估计我校高二年级在这次数学考试的平均分;
(3)若从样本中数学成绩在
与
两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率.


(1)求图中实数

(2)试估计我校高二年级在这次数学考试的平均分;
(3)若从样本中数学成绩在


某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示
根据条形图可得这50名学生这一天平均的课外阅读时间为______小时.


为了调查一款电视机的使用时间,研究人员对该款电视机进行了相应的测试,将得到的数据统计如图所示:

并对不同年龄层的市民对这款电视机的购买意愿作出调查,得到的数据如表所示:
根据图中的数据,试估计该款电视机的平均使用时间;
根据表中数据,判断是否有
的把握认为“愿意购买该款电视机”与“市民的年龄”有关;
用频率估计概率,若在该电视机的生产线上随机抽取4台,记其中使用时间不低于4年的电视机的台数为X,求X的分布列及期望.
附:

并对不同年龄层的市民对这款电视机的购买意愿作出调查,得到的数据如表所示:
| 愿意购买该款电视机 | 不愿意购买该款电视机 | 总计 |
40岁以上 | ______ | ______ | 1000 |
40岁以下 | ______ | 600 | ______ |
总计 | 1200 | ______ | ______ |




![]() | ![]() | ![]() | ![]() | ![]() |
k | ![]() | ![]() | ![]() | ![]() |
附:

从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:
(1)在表格中作出这些数据的频率分布直方图;

(2)求这些数据的众数和中位数
(3)估计这种产品质量指标的平均数(同一组中的数据用该组区间的中点值作代表);
质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
频数 | 6 | 26 | 38 | 22 | 8 |
(1)在表格中作出这些数据的频率分布直方图;

(2)求这些数据的众数和中位数
(3)估计这种产品质量指标的平均数(同一组中的数据用该组区间的中点值作代表);
为了了解人们对“延迟退休年龄政策”的态度,某部门从网年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:

(I)由频率分布直方图估计年龄的众数和平均数;

(II)由以上统计数据填2×2列联表,并判断是否有95%的把握认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;

参考数据:


(III)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人.求抽到的2人中1人是45岁以下,另一人是45岁以上的概率.

(I)由频率分布直方图估计年龄的众数和平均数;

(II)由以上统计数据填2×2列联表,并判断是否有95%的把握认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;

参考数据:


(III)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人.求抽到的2人中1人是45岁以下,另一人是45岁以上的概率.
某学校为了解高三复习效果,从高三第一学期期中考试成绩中随机抽取50名考生的数学成绩,分成6组制成频率分布直方图如图所示:

(1)求
的值;并且计算这50名同学数学成绩的样本平均数
;
(2)该学校为制定下阶段的复习计划,从成绩在
的同学中选出3位作为代表进行座谈,记成绩在
的同学人数位
,写出
的分布列,并求出期望.

(1)求


(2)该学校为制定下阶段的复习计划,从成绩在




当前,以“立德树人”为目标的课程改革正在有序推进.高中联招对初三毕业学生进行体育测试,是激发学生、家长和学校积极开展体育活动,保证学生健康成长的有效措施.程度2019年初中毕业生升学体育考试规定,考生必须参加立定跳远、掷实心球、1分钟跳绳三项测试,三项考试满分50分,其中立定跳远15分,掷实心球15分,1分钟跳绳20分.某学校在初三上期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到下边频率分布直方图,且规定计分规则如下表:

(1)请估计学生的跳绳个数的众数、中位数和平均数(保留整数);
(2)若从跳绳个数在
、
两组中按分层抽样的方法抽取9人参加正式测试,并从中任意选取2人,求两人得分之和不大于34分的概率.
每分钟跳绳个数 | ![]() | ![]() | ![]() | ![]() |
得分 | 17 | 18 | 19 | 20 |

(1)请估计学生的跳绳个数的众数、中位数和平均数(保留整数);
(2)若从跳绳个数在

