- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则以下四种说法中正确的个数为( )
①甲的成绩的平均数等于乙的成绩的平均数 ②甲的成绩的中位数大于乙的成绩的中位数
③甲的成绩的方差小于乙的成绩的方差 ④甲的成绩的极差等于乙的成绩的极差

①甲的成绩的平均数等于乙的成绩的平均数 ②甲的成绩的中位数大于乙的成绩的中位数
③甲的成绩的方差小于乙的成绩的方差 ④甲的成绩的极差等于乙的成绩的极差
A.1 | B.2 | C.3 | D.4 |
某小组10名学生参加的一次数学竞赛的成绩分别为:92、77、75、90、63、84、99、60、79、85,求总体平均数μ、中位数m、方差σ2和标准差σ;(列式并计算,结果精确到0.1)
某单位共有10名员工,他们某年的收入如下表:
(1)求该单位员工当年年薪的平均值和中位数;
(2)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元、5.5万元、6万元、8.5万元,预测该员工第六年的年薪为多少?
附:线性回归方程
中系数计算公式分别为:
,
,其中
、
为样本均值.
员工编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年薪(万元) | 4 | 4.5 | 6 | 5 | 6.5 | 7.5 | 8 | 8.5 | 9 | 51 |
(1)求该单位员工当年年薪的平均值和中位数;
(2)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元、5.5万元、6万元、8.5万元,预测该员工第六年的年薪为多少?
附:线性回归方程





“伟大的变革—庆祝改革开放40周年大型展览”于2019年3月20日在中国国家博物馆闭幕,本次特展紧扣“改革开放40年光辉历程”的主线,多角度、全景式描绘了我国改革开放40年波澜壮阔的历史画卷.据统计,展览全程呈现出持续火爆的状态,现场观众累计达423万人次,参展人数屡次创造国家博物馆参观纪录,网上展馆点击浏览总量达4.03亿次.
下表是2019年2月参观人数(单位:万人)统计表

根据表中数据回答下列问题:
(1)请将2019年2月前半月(1~14日)和后半月(15~28日)参观人数统计对比茎叶图填补完整,并通过茎叶图比较两组数据方差的大小(不要求计算出具体值,得出结论即可);
(2)将2019年2月参观人数数据用该天的对应日期作为样本编号,现从中抽样7天的样本数据.若抽取的样本编号是以4为公差的等差数列,且数列的第4项为15,求抽出的这7个样本数据的平均值;
(3)根据国博以往展览数据及调查统计信息可知,单日入馆参观人数为0~3(含3,单位:万人)时,参观者的体验满意度最佳,在从(2)中抽出的样本数据中随机抽取两天的数据,求这两天参观者的体验满意度均为最住的概率.
下表是2019年2月参观人数(单位:万人)统计表
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
人数 | 3.0 | 3.1 | 2.5 | 2.3 | 5.4 | 6.8 | 6.2 | 6.7 | 5.5 | 4.9 | 3.2 | 3.0 | 2.7 | 2.5 |
日期 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |
人数 | 2.4 | 2.9 | 3.2 | 2.8 | 2.9 | 2.3 | 3.0 | 2.9 | 3.1 | 3.0 | 3.1 | 3.1 | 3.1 | 3.0 |

根据表中数据回答下列问题:
(1)请将2019年2月前半月(1~14日)和后半月(15~28日)参观人数统计对比茎叶图填补完整,并通过茎叶图比较两组数据方差的大小(不要求计算出具体值,得出结论即可);
(2)将2019年2月参观人数数据用该天的对应日期作为样本编号,现从中抽样7天的样本数据.若抽取的样本编号是以4为公差的等差数列,且数列的第4项为15,求抽出的这7个样本数据的平均值;
(3)根据国博以往展览数据及调查统计信息可知,单日入馆参观人数为0~3(含3,单位:万人)时,参观者的体验满意度最佳,在从(2)中抽出的样本数据中随机抽取两天的数据,求这两天参观者的体验满意度均为最住的概率.
某医院体检中心为回馈大众,推出优惠活动:对首次参加体检的人员,按200元/次收费,并注册成为会员,对会员的后续体检给予相应优惠(本次即第一次),标准如下:
该体检中心从所有会员中随机选取了100位对他们在本中心参加体检的次数进行统计,得到数据如下表:
假设该体检中心为顾客体检一次的成本费用为150元,根据所给数据,解答下列问题:
(1)已知某顾客在此体检中心参加了3次体检,求这3次体检,该体检中心的平均利润;
(2)该体检中心要从这100人里至少体检3次的会员中,按体检次数用分层抽样的方法抽出5人,再从这5人中抽取2人发放纪念品,求抽到的2人中恰有1人体检3次的概率.
体检次序 | 第一次 | 第二次 | 第三次 | 第四次 | 第五次及以上 |
收费比例 | 1 | 0.95 | 0.90 | 0.85 | 0.8 |
该体检中心从所有会员中随机选取了100位对他们在本中心参加体检的次数进行统计,得到数据如下表:
体检次数 | 一次 | 两次 | 三次 | 四次 | 五次及以上 |
频数 | 60 | 20 | 12 | 4 | 4 |
假设该体检中心为顾客体检一次的成本费用为150元,根据所给数据,解答下列问题:
(1)已知某顾客在此体检中心参加了3次体检,求这3次体检,该体检中心的平均利润;
(2)该体检中心要从这100人里至少体检3次的会员中,按体检次数用分层抽样的方法抽出5人,再从这5人中抽取2人发放纪念品,求抽到的2人中恰有1人体检3次的概率.
某校高一年级有甲,乙,丙三位学生,他们前三次月考的物理成绩如表:
则下列结论正确的是( )
| 第一次月考物理成绩 | 第二次月考物理成绩 | 第三次月考物理成绩 |
学生甲 | 80 | 85 | 90 |
学生乙 | 81 | 83 | 85 |
学生丙 | 90 | 86 | 82 |
则下列结论正确的是( )
A.甲,乙,丙第三次月考物理成绩的平均数为86 |
B.在这三次月考物理成绩中,甲的成绩平均分最高 |
C.在这三次月考物理成绩中,乙的成绩最稳定 |
D.在这三次月考物理成绩中,丙的成绩方差最大 |
上海地铁11号线是世界最长的地铁截至2019年9月28日,中国已开通地铁的城市有41个,按照地铁的全长排名,排在前四名的依次为上海
、北京
、广州
、南京
,则这四个城市的地铁全长的平均值为______
.





为选拔A,B两名选手参加某项比赛,在选拔测试期间,他们参加选拔的5次测试成绩(满分100分)记录如下:

(1)从A,B两人的成绩中各随机抽取一个,求B的成绩比A低的概率;
(2)从统计学的角度考虑,你认为选派哪位选手参加比赛更合适?说明理由.

(1)从A,B两人的成绩中各随机抽取一个,求B的成绩比A低的概率;
(2)从统计学的角度考虑,你认为选派哪位选手参加比赛更合适?说明理由.