- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某篮球教练对甲乙两位运动员在近五场比赛中的得分情况统计如下图所示,根据图表给出如下结论:(1)甲乙两人得分的平均数相等且甲的方差比乙的方差小;(2)甲乙两人得分的平均数相等且甲的方差比乙的方差大;(3)甲的成绩在不断提高,而乙的成绩无明显提高;(4)甲的成绩较稳定,乙的成续基本呈上升状态;结论正确的是( )


A.(1)(3) | B.(1)(4) | C.(2)(3) | D.(2)(4) |
如表是某位同学连续5次周考的历史、政治的成绩,结果如下:
参考公式:
,
,
表示样本均值.
(1)求该生5次月考历史成绩的平均分和政治成绩的方差;
(2)一般来说,学生的历史成绩与政治成绩有较强的线性相关关系,根据上表提供的数据,求两个变量
的线性回归方程.
周次 | 1 | 2 | 3 | 4 | 5 |
历史(x分) | 79 | 81 | 83 | 85 | 87 |
政治(y分) | 77 | 79 | 79 | 82 | 83 |
参考公式:



(1)求该生5次月考历史成绩的平均分和政治成绩的方差;
(2)一般来说,学生的历史成绩与政治成绩有较强的线性相关关系,根据上表提供的数据,求两个变量

随着人口老龄化的不断加快,我国出现了一个特殊的群——“空巢老人”.这些老人或经济困难,或心理寂寞,亟需来自社会的关心关爱.为此,社区志愿者开展了“暖巢行动”,其中A,B两个小区“空巢老人”的年龄如图所示,则A小区“空巢老人”年龄的平均数和B小区“空巢老人”年龄的中位数分别是( )


A.83.5;83 | B.84;84.5 | C.85;84 | D.84.5;84.5 |
已知一组数据3,4,5,a,b的平均数是4,中位数是m,从3,4,5,a,b,m这组数据中任取一数,取到数字4的概率为
,那么3,4,5,a,b这组数据的方差为( )

A.![]() | B.2 | C.![]() | D.![]() |
某幼儿园举办“yue”主题系列活动——“悦”动越健康亲子运动打卡活动,为了解小朋友坚持打卡的情况,对该幼儿园所有小朋友进行了调查,调查结果如下表:
(1)根据上表数据,求该幼儿园男生平均打卡的天数;
(2)若从打卡21天的小朋友中任选2人交流心得,求选到男生和女生各1人的概率.
打卡天数 | 17 | 18 | 19 | 20 | 21 |
男生人数 | 3 | 5 | 3 | 7 | 2 |
女生人数 | 3 | 5 | 5 | 7 | 3 |
(1)根据上表数据,求该幼儿园男生平均打卡的天数;
(2)若从打卡21天的小朋友中任选2人交流心得,求选到男生和女生各1人的概率.
众所周知,城市公交车的数量太多会造成资源的浪费,太少又难以满足乘客的需求,为此,某市公交公司在某站台的50名候车乘客中随机抽取10名,统计了他们的候车时间(单位:分钟),得到下表.
(1)估计这10名乘客的平均候车时间(同一组中的每个数据可用该组区间的中点值代替);
(2)估计这50名乘客的候车时间少于10分钟的人数.
候车时间 | 人数 |
![]() | 1 |
![]() | 4 |
![]() | 2 |
![]() | 2 |
![]() | 1 |
(1)估计这10名乘客的平均候车时间(同一组中的每个数据可用该组区间的中点值代替);
(2)估计这50名乘客的候车时间少于10分钟的人数.
下图是某公司2018年1月至12月空调销售任务及完成情况的气泡图,气泡的大小表示完成率的高低,如10月份销售任务是400台,完成率为90%,则下列叙述不正确的是( )


A.2018年3月的销售任务是400台 |
B.2018年月销售任务的平均值不超过600台 |
C.2018年第一季度总销售量为830台 |
D.2018年月销售量最大的是6月份 |
某种零件的质量指标值为整数,指标值为8时称为合格品,指标值为7或者9时称为准合格品,指标值为6或10时称为废品,某单位拥有一台制造该零件的机器,为了了解机器性能,随机抽取了该机器制造的100个零件,不同的质量指标值对应的零件个数如下表所示;
使用该机器制造的一个零件成本为5元,合格品可以以每个
元的价格出售给批发商,准合格品与废品无法岀售.
(1)估计该机器制造零件的质量指标值的平均数;
(2)若该单位接到一张订单,需要该零件2100个,为使此次交易获利达到1400元,估计
的最小值;
(3)该单位引进了一台加工设备,每个零件花费2元可以被加工一次,加工结果会等可能出现以下三种情况:①质量指标值增加1,②质量指标值不变,③质量指标值减少1.已知每个零件最多可被加工一次,且该单位计划将所有准合格品逐一加工,在(2)的条件下,估计
的最小值(精确到0.01) .
质量指标值 | 6 | 7 | 8 | 9 | 10 |
零件个数 | 6 | 18 | 60 | 12 | 4 |
使用该机器制造的一个零件成本为5元,合格品可以以每个

(1)估计该机器制造零件的质量指标值的平均数;
(2)若该单位接到一张订单,需要该零件2100个,为使此次交易获利达到1400元,估计

(3)该单位引进了一台加工设备,每个零件花费2元可以被加工一次,加工结果会等可能出现以下三种情况:①质量指标值增加1,②质量指标值不变,③质量指标值减少1.已知每个零件最多可被加工一次,且该单位计划将所有准合格品逐一加工,在(2)的条件下,估计
