- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- + 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校在“普及环保知识节”后,为了进一步增强环保意识,从本校学生中随机抽取了一批学生参加环保基础知识测试.经统计,这批学生测试的分数全部介于75至100之间.将数据分成以下
组:第1组
,第2组
,第3组
,第4组
,第5组
,得到如图所示的频率分布直方图.

(Ⅰ)求a的值;
(Ⅱ)现采用分层抽样的方法,从第3,4,5组中随机抽取6名学生座谈,求每组抽取的学生人数;
(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计随机抽取学生所得测试分数的平均值在第几组(只需写出结论).







(Ⅰ)求a的值;
(Ⅱ)现采用分层抽样的方法,从第3,4,5组中随机抽取6名学生座谈,求每组抽取的学生人数;
(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计随机抽取学生所得测试分数的平均值在第几组(只需写出结论).
为了调查学生数学学习的质量情况,某校从高二年级学生(其中男生与女生的人数之比为9:11)中,采用分层抽样的方法抽取n名学生依期中考试的数学成绩进行统计.根据数学的分数取得了这n名同学的数据,按照以下区间分为八组:
①[30,45), ②[45,60),
③[60,75), ④[75,90),
⑤[90,105), ⑥[105,120),
⑦[120,135), ⑧[135,150)
得到频率分布直方图如图.已知抽取的学生中数学成绩少于60分的人数为5人.

(1)求n的值及频率分布直方图中第④组矩形条的高度;
(2)如果把“学生数学成绩不低于90分”作为是否达标的标准,对抽取的n名学生,完成下列2´2列联表:
.
据此资料,你是否认为“学生性别”与“数学成绩达标与否”有关?
(3)若从第①组和第②组的学生中随机抽取3人,求这3人中不含第①组学生的概率.
附1:“2´2列联表
”的卡方统计量公式:K2=
附2:卡方(K2)统计量的概率分布表:
①[30,45), ②[45,60),
③[60,75), ④[75,90),
⑤[90,105), ⑥[105,120),
⑦[120,135), ⑧[135,150)
得到频率分布直方图如图.已知抽取的学生中数学成绩少于60分的人数为5人.

(1)求n的值及频率分布直方图中第④组矩形条的高度;
(2)如果把“学生数学成绩不低于90分”作为是否达标的标准,对抽取的n名学生,完成下列2´2列联表:

据此资料,你是否认为“学生性别”与“数学成绩达标与否”有关?
(3)若从第①组和第②组的学生中随机抽取3人,求这3人中不含第①组学生的概率.
附1:“2´2列联表


附2:卡方(K2)统计量的概率分布表:

为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了了解这次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,请你根据尚未完成的频率分布表和频率分布直方图,回答下面问题:

(1)结合图表信息,补全频率分布直方图;
(2)对于参加这次竞赛的900名学生,估计成绩不低于76分的约有多少人.

(1)结合图表信息,补全频率分布直方图;
(2)对于参加这次竞赛的900名学生,估计成绩不低于76分的约有多少人.
某市统计局就本地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示月收入在
,(单位:元).

(Ⅰ)估计居民月收入在
的概率;
(Ⅱ)根据频率分布直方图估计样本数据的中位数;


(Ⅰ)估计居民月收入在

(Ⅱ)根据频率分布直方图估计样本数据的中位数;
某公司为了解广告投入对销售收益的影响,在若干地区各投入
万元广告费用,并将各地的销售收益(单位:万元)绘制成如图所示的频率分布直方图.由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从
开始计数的.


(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)该公司按照类似的研究方法,测得另外一些数据,并整理得到上表:表中的数据显示
与
之间存在线性相关关系,求
关于
的回归方程;
(Ⅲ)若广告投入
万元时,实际销售收益为
.
万元,求残差
.

附:




(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)该公司按照类似的研究方法,测得另外一些数据,并整理得到上表:表中的数据显示




(Ⅲ)若广告投入






为了减少交通事故,某市在不同路段对机动车时速有不同的限制,在限速为
的某一路段上,流动测速车对经过该路段的100辆机动车进行测速,下图是所测100辆机动车时速的频率分布直方图.

(1)估计这100辆机动车中,时速超过限定速度
以上(包括
)的机动车辆数;
(2)该市对机动车超速的处罚规定如下:时速超过限定速度
(包括
)以上不足
的处100元罚款;超过限定速度
(包括20%)以上不足
的处200元罚款;…,设这一路段中任意一辆机动车被处罚金额为
(单位:元),求
的分布列和数学期望(以被测的100辆机动车时速落入各组的频率作为该路段中任意一辆机动车时速落入相应组的频率.)


(1)估计这100辆机动车中,时速超过限定速度


(2)该市对机动车超速的处罚规定如下:时速超过限定速度







对“小康县”的经济评价标准:
①年人均收入不小于7000元;
②年人均食品支出不大于年人均收入的35%.某县有40万人口,调查数据如下:
则该县( )

①年人均收入不小于7000元;
②年人均食品支出不大于年人均收入的35%.某县有40万人口,调查数据如下:
年人均收入(元) | 0 | 2000 | 4000 | 6000 | 8000 | 10000 | 12000 | 16000 |
人数(万人) | 6 | 3 | 5 | 5 | 6 | 7 | 5 | 3 |
则该县( )

A.是小康县 |
B.达到标准①,未达到标准②,不是小康县 |
C.达到标准②,未达到标准①,不是小康县 |
D.两个标准都未达到,不是小康县 |
某班同学利用寒假在5个居民小区内选择两个小区逐户进行一次“低碳生活习惯”的调查,以计算每户的碳月排放量.若月排放量符合低碳标准的称为“低碳族”,否则称为“非低碳族”.若小区内有至少
的住户属于“低碳族”,则称这个小区为“低碳小区”,否则称为“非低碳小区” .若备选的5个居民小区中有三个非低碳小区,两个低碳小区.

(1)求所选的两个小区恰有一个为“非低碳小区”的概率;
(2)假定选择的“非低碳小区”为小区
,调查显示其“低碳族”的比例为1:2,数据如图1所示,经过大力宣传,三个月后又进行一次调查,数据如图2所示,问这时小区
是否达到“低碳小区”的标准?


(1)求所选的两个小区恰有一个为“非低碳小区”的概率;
(2)假定选择的“非低碳小区”为小区


根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80
/100
(不含80)之间,属于酒后驾车;血液酒精浓度在80
/100
(含80)以上时,属醉酒驾车.据《法制晚报》报道,2013年1月1日至1月7日,全国查处酒后驾车和醉酒驾车共38800人,如图是对这38800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为______.




