- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- + 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达
亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为
.


(1)确定
,
,
,
的值,并补全频率分布直方图;
(2)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.
①请将列联表补充完整;
②并据此列联表判断,是否有
%的把握认为网购金额超过2000元与网龄在三年以上有关?
参考数据:
(参考公式:
,其中
)




(1)确定




(2)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.
①请将列联表补充完整;
| 网龄3年以上 | 网龄不足3年 | 合计 |
购物金额在2000元以上 | 35 | | |
购物金额在2000元以下 | | 20 | |
合计 | | | 100 |
②并据此列联表判断,是否有

参考数据:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(参考公式:


(本小题满分12分)根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如下图显示.

已知
、
、
三个年龄段的上网购物者人数成等差数列,求
,
的值;
该电子商务平台将年龄在
之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1000位上网购物者中抽取5人,并在这5人中随机抽取3人进行回访,求此三人获得代金券总和为200元的概率.









某校对参加高校自主招生测试的学生进行模拟训练,从中抽出N名学生,其数学成绩的频率分布直方图如图所示.已知成绩在区间[90,100]内的学生人数为2人.

(1)求N的值并估计这次测试数学成绩的平均分和众数;
(2)学校从成绩在[70,100]的三组学生中用分层抽样的方法抽取12名学生进行复试,若成绩在[80,90)这一小组中被抽中的学生实力相当,且能通过复试的概率均为
,设成绩在[80,90)这一小组中被抽中的学生中能通过复试的人数为
,求
的分布列和数学期望.

(1)求N的值并估计这次测试数学成绩的平均分和众数;
(2)学校从成绩在[70,100]的三组学生中用分层抽样的方法抽取12名学生进行复试,若成绩在[80,90)这一小组中被抽中的学生实力相当,且能通过复试的概率均为



某工厂为了检查一条流水线的生产情况,从该流水线上随机抽取40件产品,测量这些产品的重量(单位:克),整理后得到如下的频率分布直方图(其中重量的分组区间分别为(490,495],(495,500],(500,505],(505,510],(510,515])

(1)若从这40件产品中任取两件,设X为重量超过505克的产品数量,求随机变量X的分布列;
(2)若将该群体分别近似看作总体分布,现从该流水线上任取5件产品,求恰有两件产品的重量超过505克的概率.

(1)若从这40件产品中任取两件,设X为重量超过505克的产品数量,求随机变量X的分布列;
(2)若将该群体分别近似看作总体分布,现从该流水线上任取5件产品,求恰有两件产品的重量超过505克的概率.
某校从参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),...,[90,100]后得到如图所示的部分频率分布直方图.观察图形的信息,回答下列问题:

(1)求分数在[70,80)内的频率,并补全这个频率分布直方图,统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(2)若从60名学生中随机抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100]记2分,用
表示抽取结束后的总记分,求
的分布列和数学期望.

(1)求分数在[70,80)内的频率,并补全这个频率分布直方图,统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(2)若从60名学生中随机抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100]记2分,用


某个团购网站为了更好地满足消费者,对在其网站发布的团购产品展开了用户调查,每个用户在使用了团购产品后可以对该产品进行打分,最高分是
分.上个月该网站共卖出了
份团购产品,所有用户打分的平均分作为该产品的参考分值,将这些产品按照得分分成以下几组:第一组
,第二组
,第三组
,第四组
,第五组
,得到的频率分布直方图如图所示.

(Ⅰ)分别求第三,四,五组的频率;
(Ⅱ)该网站在得分较高的第三,四,五组中用分层抽样的方法抽取了
个产品作为下个月团购的特惠产品,某人决定在这
个产品中随机抽取
个购买,求他抽到的两个产品均来自第三组的概率.








(Ⅰ)分别求第三,四,五组的频率;
(Ⅱ)该网站在得分较高的第三,四,五组中用分层抽样的方法抽取了



从某校高三的
名学生中用随机抽样的方法,得到其中
人的身高数据(单位:
,所得数据均在
上),并制成频率分布直方图(如下图所示),由该图可估计该校高三学生中身高不低于
的人数约为()







A.![]() | B.![]() | C.![]() | D.![]() |
某市在“国际禁毒日”期间,连续若干天发布了“珍爱生命,远离毒品”的电视公益广告,期望让更多的市民知道毒品的危害性.禁毒志愿者为了了解这则广告的宣传效果,随机抽取了100名年龄阶段在
,
,
,
,
的市民进行问卷调查,由此得到样本占有率分布直方图如图所示.

(Ⅰ)求随机抽取的市民中年龄在
的人数;
(Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取5人,求
年龄段抽取样品的人数;
(Ⅲ)从(Ⅱ)中方式得到的5人中再抽取2人作为本次活动的获奖者,求
年龄段仅的1人获奖的概率.






(Ⅰ)求随机抽取的市民中年龄在

(Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取5人,求

(Ⅲ)从(Ⅱ)中方式得到的5人中再抽取2人作为本次活动的获奖者,求

电视连续剧《人民的名义》自2017年3月28日在湖南卫视开播以来,引发各方关注,收视率、点击率均占据各大排行榜首位.我们用简单随机抽样的方法对这部电视剧的观看情况进行抽样调查,共调查了600人,得到结果如下:其中图1是非常喜欢《人民的名义》这部电视剧的观众年龄的频率分布直方图;表1是不同年龄段的观众选择不同观看方式的人数.


求:(I)假设同一组中的每个数据用该组区间的中点值代替,求非常喜欢《人民的名义》这部电视剧的观众的平均年龄;
(II)根据表1,通过计算说明我们是否有99%的把握认为观看该剧的方式与年龄有关?
附:
观看方式 年龄(岁) | 电视 | 网络 |
![]() | 150 | 250 |
![]() | 120 | 80 |


求:(I)假设同一组中的每个数据用该组区间的中点值代替,求非常喜欢《人民的名义》这部电视剧的观众的平均年龄;
(II)根据表1,通过计算说明我们是否有99%的把握认为观看该剧的方式与年龄有关?
![]() | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:

某校从参加高一年级期末考试的学生中抽出20名学生,将其成绩(均为整数)分成六段[40,50),[50,60)…[90,100],然后画出如下所示频率分布直方图,但是缺失了第四组[70,80)的信息.观察图形的信息,回答下列问题.

(1)求第四组[70,80)的频率;
(2)从成绩是[50,60)和[60,70)的两段学生中任意选两人,求他们在同一分数段的概率.

(1)求第四组[70,80)的频率;
(2)从成绩是[50,60)和[60,70)的两段学生中任意选两人,求他们在同一分数段的概率.