某市内有一条主干路段,为了使行车安全同时也能增加车流量,规定通过该路段的汽车时速不得低于40km/h,也不得超过70km/h,否则视为违规扣分.某天有1000辆汽车经过了该路段,经过雷达测速得到这些汽车行驶时速的频率分布直方图如图所示,则违规扣分的汽车大约为_________辆.
当前题号:1 | 题型:填空题 | 难度:0.99

为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者,从符合条件的500名志愿者中随机抽样100名志原者的年龄情况如下表所示.

(Ⅰ)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图(如图),再根据频率分布直方图估计这500名志愿者中年龄在岁的人数;
(Ⅱ)在抽出的100名志愿者中按年龄再采用分层抽样法抽取20人参加中心广场的宣传活动,从这20人中选取2名志愿者担任主要负责人,记这2名志愿者中“年龄低于30岁”的人数为,求的分布列及数学期望.
当前题号:2 | 题型:解答题 | 难度:0.99
节日期间,某种鲜花进价是每束元,销售价是每束元;节后卖不出的鲜花以每束元的价格处理.根据前五年销售情况预测,节日期间这种鲜花的需求服从如下表所示的
分布列.










 
若进这种鲜花束,则期望利润是( )
A.B.C.D.
当前题号:3 | 题型:单选题 | 难度:0.99
某校高一某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,其可见部分如下,据此解答如下问题:

(1)计算频率分布直方图中[80,90)间的矩形的高;
(2)若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份的分数在之间的概率;
(3)根据频率分布直方图估计这次测试的平均分.
当前题号:4 | 题型:解答题 | 难度:0.99
某市为了对学生的数理(数学与物理)学习能力进行分析,从10000名学生中随机抽出100位学生的数理综合学习能力等级分数(6分制)作为样本,分数频数分布如下表:
等级得分






人数
3
17
30
30
17
3
 
(Ⅰ)如果以能力等级分数大于4分作为良好的标准,从样本中任意抽取2名学生,求恰有1名学生为良好的概率;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值为1.5)作为代表:
(ⅰ)据此,计算这100名学生数理学习能力等级分数的期望及标准差(精确到0.1);
(ⅱ) 若总体服从正态分布,以样本估计总体,估计该市这10000名学生中数理学习能力等级在范围内的人数 .
(Ⅲ)从这10000名学生中任意抽取5名同学,他们数学与物理单科学习能力等级分数如下表:
 
(ⅰ)请画出上表数据的散点图;
(ⅱ)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程.(附参考数据:
当前题号:5 | 题型:解答题 | 难度:0.99
某食品厂为了检查甲乙两条自动包装流水线的生产情况,在这两条流水线上各抽取40件产品作为样本称出品厂为了检查甲、乙两条自动包装流水线的生产情况,在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在(495,510]的产品为合格品,否则为不合格品,表1是甲流水线样本频数分布表,图1是乙流水线样本的频率分布直方图.

(1)若检验员不小心将甲、乙两条流水线生产的重量值在的产品放在了一起,然后又随机取出3件产品,求至少有一件是乙流水线生产的产品的概率;
(2)由以上统计数据完成下面列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.
 
甲流水线
乙流水线
合计
合格品


 
不合格品


 
合计
 
 

 
当前题号:6 | 题型:解答题 | 难度:0.99
某超市从2000年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,整理得到数据分组及频率分布表和频率分布直方图:

(1)写出频率分布直方图中的值,并做出甲种酸奶日销售量的频率分布直方图;
(2)记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为.试比较的大小
(3)假设同一组中的每个数据可用该组区间的中间值代替,试估计乙种酸奶在未来一个月(按30天计算)的销售总量
当前题号:7 | 题型:解答题 | 难度:0.99
某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩共分五组,得到频率分布表如下表所示.

(1)请求出①②位置相应的数字,填在答题卡相应位置上,并补全频率分布直方图;
(2)为了能选出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取12人进入第二轮面试,求第3、4、5组中每组各抽取多少人进入第二轮的面试;假定考生“XXX”笔试成绩为178分,但不幸没入选这100人中,那这样的筛选方法对该生而言公平吗?为什么?
(3)在(2)的前提下,学校决定在12人中随机抽取3人接受“王教授”的面试,设第4组中被抽取参加“王教授”面试的人数为,求的分布列和数学期望.
当前题号:8 | 题型:解答题 | 难度:0.99
(本小题满分12分)2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入频率分布直方图(如图),同时得到了他们月收入情况与“国五条”赞成人数统计表(如下表):

(1)试根据频率分布直方图估计这60人的平均月收入;
(2)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调差,记选中的6人中不赞成“国五条”的人数为X,求随机变量X的分布列及数学期望.
当前题号:9 | 题型:解答题 | 难度:0.99
某高校在2012年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.

(1)分别求第3,4,5组的频率;
(2)若该校决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试.
(ⅰ)已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙恰有一人进入第二轮面试的概率;
(ⅱ)学校决定在这已抽取到的6名学生中随机抽取2名学生接受考官L的面试,设第4组中有名学生被考官L面试,求的分布列和数学期望.
当前题号:10 | 题型:解答题 | 难度:0.99