刷题首页
题库
高中数学
题干
对“小康县”的经济评价标准:
①年人均收入不小于7000元;
②年人均食品支出不大于年人均收入的35%.某县有40万人口,调查数据如下:
年人均收入(元)
0
2000
4000
6000
8000
10000
12000
16000
人数(万人)
6
3
5
5
6
7
5
3
则该县( )
A.是小康县
B.达到标准①,未达到标准②,不是小康县
C.达到标准②,未达到标准①,不是小康县
D.两个标准都未达到,不是小康县
上一题
下一题
0.99难度 单选题 更新时间:2012-09-04 06:15:46
答案(点此获取答案解析)
同类题1
某工厂有120名工人,其年龄都在20~ 60岁之间,各年龄段人数按20,30),30,40),40,50),50,60分成四组,其频率分布直方图如下图所示.工厂为了开发新产品,引进了新的生产设备,要求每个工人都要参加A、B两项培训,培训结束后进行结业考试。已知各年龄段两项培训结业考试成绩优秀的人数如下表所示。假设两项培训是相互独立的,结业考试也互不影响。
年龄分组
A项培训成绩
优秀人数
B项培训成绩
优秀人数
20,30)
27
16
30,40)
28
18
40,50)
16
9
50,60
6
4
(1)若用分层抽样法从全厂工人中抽取一个容量为40的样本,求四个年龄段应分别抽取的人数;
(2)根据频率分布直方图,估计全厂工人的平均年龄;
(3)随机从年龄段20,30)和40,50)中各抽取1人,设这两人中A、B两项培训结业考试成绩都优秀的人数为X,求X的分布列和数学期望.
同类题2
根据某水文观测点的历史统计数据,得到某河流水位
(单位:米)的频率分布直方图如下:将河流水位在以上6段的频率作为相应段的概率,并假设每年河流水位互不影响.
(Ⅰ)求未来三年,至多有1年河流水位
的概率(结果用分数表示);
(Ⅱ)该河流对沿河
企业影响如下:当
时,不会造成影响;当
时,损失10000元;当
时,损失60000元,为减少损失,现有三种应对方案:
方案一:防御35米的最高水位,需要工程费用3800元;
方案二:防御不超过31米的水位,需要工程费用2000元;
方案三:不采用措施:试比较哪种方案较好,并说明理由.
同类题3
某校50名学生参加2015年全国数学联赛初赛,成绩全部介于90分到140分之间.将成绩结果按如下方式分成五组:第一组
,第二组
,…,第五组
.按上述分组方法得到的频率分布直方图如图所示.
(1)若成绩大于或等于100分且小于120分认为是良好的,求该校参赛学生在这次数学联赛中成绩良好的人数;
(2)若从第一、五组中共随机取出两个成绩,记
为取得第一组成绩的个数,求
的分布列与数学期望.
同类题4
从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:
(Ⅰ)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;
(Ⅱ)求频率分布直方图中的
的值;
(Ⅲ)从阅读时间在
的学生中任选2人,求恰好有1人阅读时间在
,另1 人阅读时间在
的概率.
同类题5
(本小题满分12分)2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入频率分布直方图(如图),同时得到了他们月收入情况与“国五条”赞成人数统计表(如下表):
(1)试根据频率分布直方图估计这60人的平均月收入;
(2)若从月收入(单位:百元)在15,25),25,35)的被调查者中各随机选取3人进行追踪调差,记选中的6人中不赞成“国五条”的人数为X,求随机变量X的分布列及数学期望.
相关知识点
计数原理与概率统计
统计
用样本估计总体
频率分布直方图
频率分布直方图的实际应用