- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- + 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某学校艺术专业300名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:

(1)从总体的300名学生中随机抽取一人,估计其分数小于70的概率;
(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;
(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

(1)从总体的300名学生中随机抽取一人,估计其分数小于70的概率;
(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;
(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.
随着智能手机的发展,各种“APP”(英文单词Application的缩写,一般指手机软件)应运而生.某机构欲对A市居民手机内安装的APP的个数和用途进行调研,在使用智能手机的居民中随机抽取100人,获得了他们手机内安装APP的个数,整理得到如图所示频率分布直方图.

(Ⅰ)求a的值;
(Ⅱ)从被抽取安装APP的个数不低于50的居民中,随机抽取2人进一步调研,求这2人安装APP的个数都低于60的概率;
(Ⅲ)假设同组中的数据用该组区间的右端点值代替,以本次被抽取的居民情况为参考,试估计A市使用智能手机的居民手机内安装APP的平均个数在第几组(只需写出结论).

(Ⅰ)求a的值;
(Ⅱ)从被抽取安装APP的个数不低于50的居民中,随机抽取2人进一步调研,求这2人安装APP的个数都低于60的概率;
(Ⅲ)假设同组中的数据用该组区间的右端点值代替,以本次被抽取的居民情况为参考,试估计A市使用智能手机的居民手机内安装APP的平均个数在第几组(只需写出结论).
某学校高一学生有1000名学生参加一次数学小测验,随机抽取200名学生的测验成绩得如图所示的频率分布直方图:

(1)求该学校高一学生随机抽取的200名学生的数学平均成绩
和标准差
(同一组中的数据用该组区间的中点值做代表);
(2)试估计该校高一学生在这一次的数学测验成绩在区间
之内的概率是多少?测验成绩在区间
之外有多少位学生?(参考数据:
)

(1)求该学校高一学生随机抽取的200名学生的数学平均成绩


(2)试估计该校高一学生在这一次的数学测验成绩在区间



从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:
(I)在答题卡上作出这些数据的频率分布直方图:

(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
频数 | 6 | 26 | 38 | 22 | 8 |
(I)在答题卡上作出这些数据的频率分布直方图:

(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
某市2010年4月1日—4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):
61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,
77,86,81,83,82,82,64,79,86,85,75,71,49,45,
(Ⅰ) 完成频率分布表;
(Ⅱ)作出频率分布直方图;
(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.
请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.
61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,
77,86,81,83,82,82,64,79,86,85,75,71,49,45,
(Ⅰ) 完成频率分布表;
(Ⅱ)作出频率分布直方图;
(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.
请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.
2018年中秋节到来之际,某超市为了解中秋节期间月饼的销售量,对其所在销售范围内的1000名消费者在中秋节期间的月饼购买量
单位:
进行了问卷调查,得到如下频率分布直方图:
求频率分布直方图中a的值;
以频率作为概率,试求消费者月饼购买量在
的概率;
已知该超市所在销售范围内有20万人,并且该超市每年的销售份额约占该市场总量的
,请根据这1000名消费者的人均月饼购买量估计该超市应准备多少吨月饼恰好能满足市场需求
频率分布直方图中同一组的数据用该组区间的中点值作代表
?










随着手机的普及,大学生迷恋手机的现象非常严重.为了调查双休日大学生使用手机的时间,某机构采用不记名方式随机调查了使用手机时间不超过
小时的
名大学生,将
人使用手机的时间分成
组:
,
,
,
,
分别加以统计,得到下表,根据数据完成下列问题:

(1)完成频率分布直方图;
(2)根据频率分布直方图估计大学生使用手机的平均时间.









使用时间/时 | ![]() | ![]() | ![]() | ![]() | ![]() |
大学生/人 | ![]() | ![]() | ![]() | ![]() | ![]() |

(1)完成频率分布直方图;
(2)根据频率分布直方图估计大学生使用手机的平均时间.
为了解小学生的体能情况,现抽取某小学六年级100名学生进行跳绳测试,观察记录孩子们三分钟内的跳绳个数,将所得的数据整理后画出频率分布直方图,跳绳个数的数值落在区间
,
,
内的频率之比为
.(计算结果保留小数点后面3位)

(Ⅰ)求这些学生跳绳个数的数值落在区间
内的频率;
(Ⅱ)用分层抽样的方法在区间
内抽取一个容量为6的样本,将该样本看成一个总体,从中任意选取2个学生,求这2个学生跳绳个数的数值都在区间
内的概率.





(Ⅰ)求这些学生跳绳个数的数值落在区间

(Ⅱ)用分层抽样的方法在区间


某校为了解高三男生的体能达标情况,抽调了120名男生进行立定跳远测试,根据统计数据得到如下的频率分布直方图.若立定跳远成绩落在区间
的左侧,则认为该学生属“体能不达标的学生,其中
分别为样本平均数和样本标准差,计算可得
(同一组中的数据用该组区间的中点值作代表).

(1)若该校高三某男生的跳远距离为
,试判断该男生是否属于“体能不达标”的学生?
(2)该校利用分层抽样的方法从样本区间
中共抽出5人,再从中选出两人进行某体能训练,求选出的两人中恰有一人跳远距离在
的概率.




(1)若该校高三某男生的跳远距离为

(2)该校利用分层抽样的方法从样本区间


某花圃为提高某品种花苗质量,开展技术创新活动,在
实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图,记综合评分为80分及以上的花苗为优质花苗.

(1)用样本估计总体,以频率作为概率,若在
两块实验地随机抽取3株花苗,求所抽取的花苗中优质花苗数的分布列和数学期望;
(2)填写下面的列联表,并判断是否有99%的把握认为优质花苗与培育方法有关.
附:下面的临界值表仅供参考.
(参考公式:
,其中
)


(1)用样本估计总体,以频率作为概率,若在

(2)填写下面的列联表,并判断是否有99%的把握认为优质花苗与培育方法有关.
| 优质花苗 | 非优质花苗 | 合计 |
甲培育法 | 20 | | |
乙培育法 | | 10 | |
合计 | | | |
附:下面的临界值表仅供参考.
![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
(参考公式:

