- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- + 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30]. 根据直方图,若这200名学生中每周的自习时间不超过
小时的人数为164,则
的值约为( )




A.![]() | B.![]() |
C.![]() | D.![]() |
某高校调查了
名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是
,样本数据分组为
,
,
,
,
.根据直方图,这200名学生中每周的自习时间不足
小时的人数是____.









某大学在开学季准备销售一种盒饭进行试创业,在一个开学季内,每售出1盒该盒饭获利润10元,未售出的产品,每盒亏损5元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了150盒该产品,以
(单位:盒,
)表示这个开学季内的市场需求量,
(单位:元)表示这个开学季内经销该产品的利润.

(Ⅰ)根据直方图估计这个开学季内市场需求量
的平均数和众数;
(Ⅱ)将
表示为
的函数;
(Ⅲ)根据频率分布直方图估计利润
不少于1350元的概率.




(Ⅰ)根据直方图估计这个开学季内市场需求量

(Ⅱ)将


(Ⅲ)根据频率分布直方图估计利润

下图为某市2017年2月28天的日空气质量指数折线图.

由中国空气质量在线监测分析平台提供的空气质量指数标准如下:

(1)请根据所给的折线图补全下方的频率分布直方图(并用铅笔涂黑矩形区域),并估算该市2月份空气质量指数监测数据的平均数(保留小数点后一位);

(2)研究人员发现,空气质量指数测评中
与燃烧排放的
两个项目存在线性相关关系,以
为单位,下表给出
与
的相关数据:

求
关于
的回归方程,并估计当
排放量是
时,
的值.
(用最小二乘法求回归方程的系数是
,
)

由中国空气质量在线监测分析平台提供的空气质量指数标准如下:

(1)请根据所给的折线图补全下方的频率分布直方图(并用铅笔涂黑矩形区域),并估算该市2月份空气质量指数监测数据的平均数(保留小数点后一位);

(2)研究人员发现,空气质量指数测评中






求





(用最小二乘法求回归方程的系数是


全世界人们越来越关注环境保护问题,某监测站点于2016年8月某日起连续
天监测空气质量指数(
),数据统计如下:

(1)根据所给统计表和频率分布直方图中的信息求出
的值,并完成频率分布直方图;

(2)由频率分布直方图求该组数据的平均数与中位数;
(3)在空气质量指数分别属于
和
的监测数据中,用分层抽样的方法抽取5天,再从中任意选取2天,求事件
“两天空气都为良”发生的概率.



(1)根据所给统计表和频率分布直方图中的信息求出


(2)由频率分布直方图求该组数据的平均数与中位数;
(3)在空气质量指数分别属于



某市文化部门为了了解本市市民对当地地方戏曲是否喜爱,从15-65岁的人群中随机抽样了
人,得到如下的统计表和频率分布直方图.

(1)写出其中
及
和
的值;
(2)若从第1,2,3,组回答喜欢地方戏曲的人中用分层抽样的方法抽取6人,求这三组每组分别抽取多少人?
(3)在(2)抽取的6人中随机抽取2人,求抽取的2人年龄都在
的概率.


(1)写出其中



(2)若从第1,2,3,组回答喜欢地方戏曲的人中用分层抽样的方法抽取6人,求这三组每组分别抽取多少人?
(3)在(2)抽取的6人中随机抽取2人,求抽取的2人年龄都在

某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.
整理评分数据,将分数以
为组距分成
组:
,
,
,
,
,
,得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:

(Ⅰ)在抽样的100人中,求对A餐厅评分低于30的人数;
(Ⅱ)从对B餐厅评分在
范围内的人中随机选出2人,求2人中恰有1人评分在
范围内的概率;
(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.
整理评分数据,将分数以








B餐厅分数频数分布表 | |
分数区间 | 频数 |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |

(Ⅰ)在抽样的100人中,求对A餐厅评分低于30的人数;
(Ⅱ)从对B餐厅评分在


(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.
从某校高三上学期期末数学考试成绩中,随机抽取了
名学生的成绩得到频率分布直方图如下:
和
的学生中共抽取
人,该
人中成绩在
的有几人?
(2)在(1)中抽取的
人中,随机抽取
人,求分数在
和
各
人的概率.
(3)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;






(2)在(1)中抽取的





(3)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;
共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100] 分成5组,制成如图所示频率分直方图.

(1) 求图中
的值;
(2) 已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取4人进行座谈,设其中的女生人数为随机变量
,求
的分布列和数学期望.

(1) 求图中

(2) 已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取4人进行座谈,设其中的女生人数为随机变量


某学校为了解学校食堂的服务情况,随机调查了50名就餐的教师和学生.根据这50名师生对餐厅服务质量进行评分,绘制出了频率分布直方图(如图所示),其中样本数据分组为
.
(1)求频率分布直方图中
的值;
(2)从评分在
的师生中,随机抽取2人,求此人中恰好有1人评分在
上的概率;
(3)学校规定:师生对食堂服务质量的评分不得低于75分,否则将进行内部整顿,试用组中数据估计该校师生对食堂服务质量评分的平均分,并据此回答食堂是否需要进行内部整顿.

(1)求频率分布直方图中

(2)从评分在


(3)学校规定:师生对食堂服务质量的评分不得低于75分,否则将进行内部整顿,试用组中数据估计该校师生对食堂服务质量评分的平均分,并据此回答食堂是否需要进行内部整顿.
