- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- + 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(百校联盟2018届高三TOP20四月联考)某高中在今年的期末考试历史成绩中随机抽取
名考生的笔试成绩,作出其频率分布直方图如图所示,已知成绩在
中的学生有1名,若从成绩在
和
两组的所有学生中任取2名进行问卷调查,则2名学生的成绩都在
中的概率为







A.![]() | B.![]() |
C.![]() | D.![]() |
某高中学校对全体学生进行体育达标测试,每人测试A,B两个项目,每个项目满分均为60分.从全体学生中随机抽取了100人,分别统计他们A,B两个项目的测试成绩,得到A项目测试成绩的频率分布直方图和B项目测试成绩的频数分布表如下:
B项目测试成绩频数分布表
将学生的成绩划分为三个等级,如下表:
(1)在抽取的100人中,求A项目等级为优秀的人数;
(2)已知A项目等级为优秀的学生中女生有14人,A项目等级为一般或良好的学生中女生有34人,试完成下列2×2列联表,并分析是否有95%以上的把握认为“A项目等级为优秀”与性别有关?
(3)将样本的概率作为总体的概率,并假设A项目和B项目测试成绩互不影响,现从该校学生中随机抽取1人进行调查,试估计其A项目等级比B项目等级高的概率.
参考数据:
参考公式K2=
,其中n=a+b+c+d.

B项目测试成绩频数分布表
分数区间 | 频数 |
[0,10) | 2 |
[10,20) | 3 |
[20,30) | 5 |
[30,40) | 15 |
[40,50) | 40 |
[50,60] | 35 |
将学生的成绩划分为三个等级,如下表:
分数 | [0,30) | [30,50) | [50,60] |
等级 | 一般 | 良好 | 优秀 |
(1)在抽取的100人中,求A项目等级为优秀的人数;
(2)已知A项目等级为优秀的学生中女生有14人,A项目等级为一般或良好的学生中女生有34人,试完成下列2×2列联表,并分析是否有95%以上的把握认为“A项目等级为优秀”与性别有关?
优秀 | 一般或良好 | 总计 |
男生 | | |
女生 | | |
总计 | | |
(3)将样本的概率作为总体的概率,并假设A项目和B项目测试成绩互不影响,现从该校学生中随机抽取1人进行调查,试估计其A项目等级比B项目等级高的概率.
参考数据:
P(K2≥k0) | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
参考公式K2=

某奶品生产企业于2015年对铁锌牛奶、酸牛奶、纯牛奶三个品种的牛奶的生产情况进行了统计,绘制了图1、图2的统计图,请根据图中信息解答下列问题:
(1)酸牛奶生产了多少万吨?把图1补充完整;酸牛奶在图2中所对应扇形的圆心角是多少度?
(2)由于市场的需求不断增长,2016年的生产量比2015年的生产量增长了20%,按照这样的增长速度,请你估计2017年酸牛奶的生产量是多少万吨.

(1)酸牛奶生产了多少万吨?把图1补充完整;酸牛奶在图2中所对应扇形的圆心角是多少度?
(2)由于市场的需求不断增长,2016年的生产量比2015年的生产量增长了20%,按照这样的增长速度,请你估计2017年酸牛奶的生产量是多少万吨.
(多选题)2019年“双节”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中抽取了40名驾驶员进行询问调查,将他们在某段高速公路的车速(
)分成六段:
,
,
,
,
,
,得到如图所示的频率分布直方图.下列结论正确的是( )









A.这40辆小型车辆车速的众数的估计值为77.5 |
B.在该服务区任意抽取一辆车,车速超过![]() |
C.若从车速在![]() ![]() ![]() |
D.若从车速在![]() ![]() ![]() |
为增强学生的环保意识,让学生掌握更多的环保知识,某中学举行了一次“环保知识竞赛”.为了解参加本次竞赛学生的成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分100分)作为样本(样本容量为
)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(茎叶图中仅列出了得分在[50,60),[90,100]的数据),如下图所示.

(1)求样本容量
和频率分布直方图中
,
的值;
(2)在[60,70),[70,80),[80,90)内按分层抽样的方法抽取8名学生的成绩,求应抽取成绩在[70,80)内的学生的人数;
(3)在(2)的条件下,从这8名学生中随机抽取2名学生到某广场参加环保知识宣传活动,记“抽取的两名学生中成绩在[60,70)内的至多有1人”为事件
,求
.


(1)求样本容量



(2)在[60,70),[70,80),[80,90)内按分层抽样的方法抽取8名学生的成绩,求应抽取成绩在[70,80)内的学生的人数;
(3)在(2)的条件下,从这8名学生中随机抽取2名学生到某广场参加环保知识宣传活动,记“抽取的两名学生中成绩在[60,70)内的至多有1人”为事件


为进一步推进农村经济结构调整,某村举办水果观光采摘节,并推出配套的乡村游项目,现统计了4月份100名游客购买水果的情况,得到如图所示的频率分布直方图.

(1)若将购买金额不低于80元的游客称为“水果达人”,现用分层随机抽样的方法从样本的“水果达人”中抽取5人,求这5人中消费金额不低于100元的人数.
(2)为吸引顾客,该村特推出两种促销方案,方案一:每满80元可立减8元;方案二:金额超过50元但又不超过80元的部分打9折,金额超过80元但又不超过100元的部分打8折,金额超过100元的部分打7折.若水果的价格为11元/kg,某游客要购买10kg,应该选择哪种方案?

(1)若将购买金额不低于80元的游客称为“水果达人”,现用分层随机抽样的方法从样本的“水果达人”中抽取5人,求这5人中消费金额不低于100元的人数.
(2)为吸引顾客,该村特推出两种促销方案,方案一:每满80元可立减8元;方案二:金额超过50元但又不超过80元的部分打9折,金额超过80元但又不超过100元的部分打8折,金额超过100元的部分打7折.若水果的价格为11元/kg,某游客要购买10kg,应该选择哪种方案?
(多选)统计某校
名学生的某次数学同步练习成绩(满分150分),根据成绩依次分成六组:
,
,
,
,
,
,得到频率分布直方图如图所示,若不低于140分的人数为110,则下列说法正确的是( )









A.![]() | B.![]() |
C.100分以下的人数为60 | D.成绩在区间![]() |
2019年某学科能力测试共有12万考生参加,成绩采用15级分,测试成绩分布图如图,试估计成绩高于11级分的人数为( )


A.8000 | B.10000 | C.20000 | D.60000 |
为了解某地区高一学生的身体发育情况,抽查了该地区100名年龄为17.5岁~18岁的男生体重(kg),得到频率分布直方图(如图所示).可得这100名学生中体重在
的学生人数是( )



A.20 | B.30 | C.40 | D.50 |
某中学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图),其中样本数据分组的区间为
,
,
,
,
,
,
,根据频率分布直方图推测,这3000名学生在该次数学考试中成绩小于60分的学生数是__________.







