- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- + 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某个容量为100的样本,频率分布直方图如图所示:

(1)求出
的值;
(2)根据频率分布直方图分别估计样本的众数、中位数与平均数.(精确到0.1)

(1)求出

(2)根据频率分布直方图分别估计样本的众数、中位数与平均数.(精确到0.1)
国庆期间,高速公路堵车现象经常发生.某调查公司为了了解车速,在临川收费站从7座以下小型汽车中按进收费站的先后顺序,每间隔50辆就抽取一辆的抽样方法抽取40辆汽车进行抽样调查,将他们在某段高速公路的车速
)分成六段
后,得到如图的频率分布直方图.

(1)求这40辆小型汽车车速的众数和中位数的估计值;
(2)若从这40辆车速在
的小型汽车中任意抽取2辆,求抽出的2辆车车速都在
的概率.



(1)求这40辆小型汽车车速的众数和中位数的估计值;
(2)若从这40辆车速在


从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:


(Ⅰ)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;
(Ⅱ)求频率分布直方图中的
的值;
(Ⅲ)从阅读时间在
的学生中任选2人,求恰好有1人阅读时间在
,另1 人阅读时间在
的概率.


(Ⅰ)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;
(Ⅱ)求频率分布直方图中的

(Ⅲ)从阅读时间在



一所中学共有4 000名学生,为了引导学生树立正确的消费观,需抽样调查学生每天使用零花钱的数量(取整数元)情况,分层抽取容量为300的样本,作出频率分布直方图如图所示,请估计在全校所有学生中,一天使用零花钱在6元~14元的学生大约有________人. 

质检部门从企业生产的产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图的频率分布直方图,质量指标值落在区间
,
,
内的频率之比为
.
(Ⅰ)求这些产品质量指标值落在区间
内的频率;
(Ⅱ)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间
内的产品件数为
,求
的分布列与数学期望.




(Ⅰ)求这些产品质量指标值落在区间

(Ⅱ)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间




如图是某中学高一学生体重的频率分布直方图,已知图中从左到右的前三组的频率之比为1∶2∶3,则第三小组的频率为( )


A.0.125 | B.0.250 | C.0.375 | D.0.500 |
某市为了了解居民家庭网购消费情况,调查了10000户家庭的月消费金额(单位:元),消费金额均在
上,其频率分布直方图如图所示,则被调查的这10000户家庭中,月消费金额在1000元以下的有__________户.


某校从参加高一年级期末考试的学生中抽出40名学生,将其成绩(均为整数)分成六段
后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:

(1)求第四小组的频率,并补全频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分;
(3)从成绩是
~
分及
~
分的学生中选两人,记他们的成绩为
,求满足“
”的概率.


(1)求第四小组的频率,并补全频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分;
(3)从成绩是






某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.
(1)求这次铅球测试成绩合格的人数;
(2)若由直方图来估计这组数据的中位数,指出它在第几组内,并说明理由;
(3)若参加此次测试的学生中,有9人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加“毕业运动会”,已知a、b的成绩均为优秀,求两人至少有1人入选的概率。
(1)求这次铅球测试成绩合格的人数;
(2)若由直方图来估计这组数据的中位数,指出它在第几组内,并说明理由;
(3)若参加此次测试的学生中,有9人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加“毕业运动会”,已知a、b的成绩均为优秀,求两人至少有1人入选的概率。

如图是某班50位学生期中考试数学成绩的频率分布直方图.其中成绩分组区间是
.则成绩在
内的频数为( )




A.39 | B.36 | C.32 | D.30 |