- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- + 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从海中高二年级某次数学周考成绩中抽取一个容量为
的样本,制成频率分布直方图如图所示,其中成绩分组区间是:
,
,
,
,
.

(1)求图中
的值;
(2)求样本中成绩落在区间
中的学生人数;
(3)根据频率分布直方图,估计高二年级此次周考成绩的众数、中位数、平均分、方差.(精确到整数)







(1)求图中

(2)求样本中成绩落在区间

(3)根据频率分布直方图,估计高二年级此次周考成绩的众数、中位数、平均分、方差.(精确到整数)
某地区为了了解本年度数学竞赛成绩情况,从中随机抽取了
个学生的分数作为样本进行统计,按照
,
,
,
,
的分组作出频率分布直方图如图所示,已知得分在
的频数为20,且分数在70分及以上的频数为27.

(1)求样本容量
以及
,
的值;
(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中恰有一人得分在
内的概率.








(1)求样本容量



(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中恰有一人得分在

武汉市摄影协会准备在2020年1月举办主题为“我们都是追梦人”摄影图片展,通过平常人的镜头记录国强民富的幸福生活,摄影协会收到了来自社会各界的大量作品,打算从众多照片中选取100张照片展出,其参赛者年龄集中
在之间,根据统计结果,做出频率分布直方图如图:

(1)求频率直方图中
的值,并根据频率直方图,求这100位摄影者年龄的中位数;
(2)为了展示不同年龄作者眼中的幸福生活,摄影协会按照分层抽样的方法,计划从这100件照片中抽出20个最佳作品,并邀请相应作者参加“讲述照片背后的故事”座谈会.
①在答题卡上的统计表中填出每组相应抽取的人数:
②若从年龄在
的作者中选出2人把这些图片和故事整理成册,求这2人中至少有1人的年龄在
的概率.


(1)求频率直方图中

(2)为了展示不同年龄作者眼中的幸福生活,摄影协会按照分层抽样的方法,计划从这100件照片中抽出20个最佳作品,并邀请相应作者参加“讲述照片背后的故事”座谈会.
①在答题卡上的统计表中填出每组相应抽取的人数:
年龄 | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | | | | | |
②若从年龄在


某校学生会开展了一次关于“垃圾分类”问卷调查的实践活动,组织部分学生干部在几个大型小区随机抽取了共50名居民进行问卷调查.调查结束后,学生会对问卷结果进行了统计,并将其中一个问题“是否知道垃圾分类方法(知道或不知道)”的调查结果统计如下表:

(1)求上表中的
的值,并补全右图所示的的频率直方图;
(2)在被调查的居民中,若从年龄在
的居民中各随机选取1人参加垃圾分类知识讲座,求选中的两人中仅有一人不知道垃圾分类方法的概率.
年龄(岁) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | 14 | 12 | 8 | 6 |
知道的人数 | 3 | 4 | 8 | 7 | 3 | 2 |

(1)求上表中的

(2)在被调查的居民中,若从年龄在

武汉市政府为了给“世界军运会”营造良好交通环境,特招聘了一批交通协管员,这些协管员的年龄都在
之间,按年龄情况对他们进行统计得到的频率分布直方图如下,其中年龄在
岁的有10人,
岁的有45人.

(1)补全频率分布直方图,并估计协管员的年龄中位数;
(2)为感谢年长的协管员的支持,利用分层抽样的方法从年龄在
的协管员中抽取5人,并从这5人中再抽取3人,各赠送一份礼品,求仅有一人年龄在
的概率.




(1)补全频率分布直方图,并估计协管员的年龄中位数;
(2)为感谢年长的协管员的支持,利用分层抽样的方法从年龄在


2019年12月,全国各中小学全体学生都参与了《禁毒知识》的答题竞赛,现从某校高一年级参加考试的学生中抽出60名学生,将其成绩(单位:分)整理后,得到如下频率分布直方图(其中分组区间为
,
,…
).

(1)求成绩在
的频率,并补全此频率分布直方图;
(2)求这次考试成绩的中位数的估计值;
(3)若从抽出的成绩在
和
的学生中任选两人,求他们的成绩在同一分组区间的概率.




(1)求成绩在

(2)求这次考试成绩的中位数的估计值;
(3)若从抽出的成绩在


某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60][60,70][70,80][80,90][90,100].

(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.

(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.

某农科站技术员为了解某品种树苗的生长情况,在该批树苗中随机抽取一个容量为
的样本,测量树苗高度(单位:
).经统计,高度均在区间
内,将其按
,
,
,
,
,
分成
组,制成如图所示的频率分布直方图,其中高度不低于
的树苗为优质树苗.

(1)求频率分布直方图中
的值;
(2)已知所抽取的这
棵树苗来自于甲、乙两个地区,部分数据如下
列联表所示,将列联表补充完整,并根据列联表判断是否有
的把握认为优质树苗与地区有关?
附:












(1)求频率分布直方图中

(2)已知所抽取的这



| 甲地区 | 乙地区 | |
优质树苗 | ![]() | | |
非优质树苗 | | ![]() | |
合计 | | | |
附:

![]() | ![]() | ![]() | ![]() | ![]() |
某房产销售公司从登记购房的客户中随机选取了50名客户进行调查,按他们购一套房的价格(万元)分成6组:
,
,
,
,
,
得到频率分布直方图如图所示.用频率估计概率.

房产销售公司每卖出一套房,房地产商给销售公司的佣金如下表(单位:万元):
(1)求
的值;
(2)求房产销售公司卖出一套房的平均佣金;
(3)若该销售公司平均每天销售4套房,请估计公司月(按30天计)利润(利润=总佣金-销售成本).
该房产销售公司每月(按30天计)的销售成本占总佣金的百分比按下表分段累计计算:







房产销售公司每卖出一套房,房地产商给销售公司的佣金如下表(单位:万元):
房价区间 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
佣金收入 | 1 | 2 | 3 | 4 | 5 | 6 |
(1)求

(2)求房产销售公司卖出一套房的平均佣金;
(3)若该销售公司平均每天销售4套房,请估计公司月(按30天计)利润(利润=总佣金-销售成本).
该房产销售公司每月(按30天计)的销售成本占总佣金的百分比按下表分段累计计算:
月总佣金 | 不超过100万元的部分 | 超过100万元至200万元的部分 | 超过200万元至300万元的部分 | 超过300万元的部分 |
销售成本占 佣金比例 | ![]() | ![]() | ![]() | ![]() |