- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为弘扬“中华优秀传统文化”,某中学在校内对全体学生进行了一次相关测试,规定分数大于等于80分为优秀,为了解学生的测试情况,现从近2000名学生中随机抽取100名学生进行分析,按成绩分组,得到如下的频率分布表:
(1)在图中作出这些数据的频率分布直方图;

(2)估计这次测试的平均分;
(3)将频率视为概率,从该中学中任意选取3名学生,
表示这3名学生成绩优秀的人数,求
的分布列和数学期望.
分数 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 5 | 35 | 30 | 20 | 10 |
(1)在图中作出这些数据的频率分布直方图;

(2)估计这次测试的平均分;
(3)将频率视为概率,从该中学中任意选取3名学生,


为办好省运会,计划招募各类志愿者1.2万人.为做好宣传工作,招募小组对15-40岁的人群随机抽取了100人,回答“省运会”的有关知识,根据统计结果制作了如下的统计图表1、表2:
(I)分别求出表2中的a、x的值;
(II)若在第2、3、4组回答完全正确的人中,用分层抽样的方法抽取6人,则各组应分别抽取多少人?
(III)在(II)的前提下,招募小组决定在所抽取的6人中,随机抽取2人颁发幸运奖,求获奖的2人均来自第3组的概率.
(I)分别求出表2中的a、x的值;
(II)若在第2、3、4组回答完全正确的人中,用分层抽样的方法抽取6人,则各组应分别抽取多少人?
(III)在(II)的前提下,招募小组决定在所抽取的6人中,随机抽取2人颁发幸运奖,求获奖的2人均来自第3组的概率.

为弘扬“中华优秀传统文化”,某中学在校内对全体学生进行了一次相关测试,规定分数大于等于80分为优秀,为了解学生的测试情况,现从近2000名学生中随机抽取100名学生进行分析,按成绩分组,得到如下的频率分布表:
(1)在图中作出这些数据的频率分布直方图;

(2)估计这次测试的平均分;
(3)若这100名学生中有甲、乙两名学生,且他们的分数低于60分,现从成绩低于60的5名学生中随机选2人了解他们平时读书的情况,求甲或乙被选到的概率.
分数 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 5 | 35 | 30 | 20 | 10 |
(1)在图中作出这些数据的频率分布直方图;

(2)估计这次测试的平均分;
(3)若这100名学生中有甲、乙两名学生,且他们的分数低于60分,现从成绩低于60的5名学生中随机选2人了解他们平时读书的情况,求甲或乙被选到的概率.
2017年是某市大力推进居民生活垃圾分类的关键一年,有关部门为宣传垃圾分类知识,面向该市市民进行了一次“垃圾分类知识”的网络问卷调查,每位市民仅有一次参与机会,通过抽样,得到参与问卷调查中的1000人的得分数据,其频率分布直方图如图所示:

(Ⅰ)估计该组数据的中位数、众数;
(Ⅱ)由频率分布直方图可以认为,此次问卷调查的得分Z服从正态分布N(μ,210),μ近似为这1000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布,求P(50.5<Z<94);
(Ⅲ)在(Ⅱ)的条件下,有关部门为此次参加问卷调査的市民制定如下奖励方案:
(i)得分不低于μ可获赠2次随机话费,得分低于μ则只有1次;
(ii)每次赠送的随机话费和对应概率如下:
现有一位市民要参加此次问卷调查,记X(单位:元)为该市民参加.问卷调查获赠的话费,求X的分布列和数学期望.
附:
,
若Z〜N(μ,σ2),则P(μ-σ<Z<μ+σ)= 0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.

(Ⅰ)估计该组数据的中位数、众数;
(Ⅱ)由频率分布直方图可以认为,此次问卷调查的得分Z服从正态分布N(μ,210),μ近似为这1000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布,求P(50.5<Z<94);
(Ⅲ)在(Ⅱ)的条件下,有关部门为此次参加问卷调査的市民制定如下奖励方案:
(i)得分不低于μ可获赠2次随机话费,得分低于μ则只有1次;
(ii)每次赠送的随机话费和对应概率如下:
赠送话费(单元:元) | 10 | 20 |
概率 | ![]() | ![]() |
现有一位市民要参加此次问卷调查,记X(单位:元)为该市民参加.问卷调查获赠的话费,求X的分布列和数学期望.
附:

若Z〜N(μ,σ2),则P(μ-σ<Z<μ+σ)= 0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.
近年来城市“共享单车”的投放在我国各地迅猛发展,“共享单车”为人们出行提供了很大的便利,但也给城市的管理带来了一些困难,现某城市为了解人们对“共享单车”投放的认可度,对
年龄段的人群随机抽取
人进行了一次“你是否赞成投放共享单车”的问卷调查,根据调查结果得到如下统计表和各年龄段人数频率分布直方图:

(
)求
,
,
的值.
(
)在第四、五、六组“赞成投放共享单车”的人中,用分层抽样的方法抽取
人参加“共享单车”骑车体验活动,求第四、五、六组应分别抽取的人数.
(
)在(
)中抽取的
人中随机选派
人作为领队,求所选派的
人中第五组至少有一人的概率.


组号 | 分组 | 赞成投放的人数 | 赞成投放的人数占本组的频率 |
第一组 | ![]() | ![]() | ![]() |
第二组 | ![]() | ![]() | ![]() |
第三组 | ![]() | ![]() | ![]() |
第四组 | ![]() | ![]() | ![]() |
第五组 | ![]() | ![]() | ![]() |
第六组 | ![]() | ![]() | ![]() |

(




(


(





某高校进行社会实践,对
岁的人群随机抽取 1000 人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到到各年龄段人数的频率分布直方图如图所示,其中在
岁,
岁年龄段人数中,“时尚族”人数分别占本组人数的
、
.
(1)求
岁与
岁年龄段“时尚族”的人数;
(2)从
岁和
岁年龄段的“时尚族”中,采用分层抽样法抽取6人参加网络时尚达人大赛,其中两人作为领队.求领队的两人年龄都在
岁内的概率。





(1)求


(2)从




某高校进行社会实践,对
岁的人群随机抽取1000人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到各年龄段人数的频率分布直方图如图所示,其中在
岁、
岁年龄段人数中,“时尚族”人数分别占本组人数的80%、60%.
请完成以下问题:
(1)求
岁与
岁年龄段“时尚族”的人数;
(2)从
岁和
岁年龄段的“时尚族”中,采用分层抽样法抽取6人参加网络时尚达人大赛,其中两人作为领队,求领队的两人年龄都在
岁内的概率.



请完成以下问题:
(1)求


(2)从




广场舞是现代城市群众文化、娱乐发展的产物,也是城市精神文明建设成果的一个重要象征.2017年某交社会实践小组对某小区广场舞的开展状况进行了年龄的调查,随机抽取了40名广场舞者进行调查,将他们的年龄分成6组
后得到如图所示的频率分布直方图.

(1)根据广场舞者年龄的频率分布直方图,估计广场舞者的平均年龄;
(2)若从年龄在
内的广场舞者中任取2名,求选中的两人中至少有一人年龄在
内的概率.


(1)根据广场舞者年龄的频率分布直方图,估计广场舞者的平均年龄;
(2)若从年龄在


中华民族是一个传统文化丰富多彩的民族,各民族有许多优良的传统习俗,如过大年吃饺子,元宵节吃汤圆,端午节吃粽子,中秋节吃月饼等等,让人们感受到浓浓的节目味道. 某小区有1200户家庭,全部居民在小区的8栋楼内,各家庭在过年时各自包有肉馅饺子、蛋馅饺子和素馅饺子三种味道的饺子(假设每个家庭包有且只包有这三种味道中的一种味道的饺子).
(1)现根据饺子的不同味道用分层抽样的方法从该小区随机抽样抽取
户家庭,其中有10户家庭包的是素馅饺子,在抽取家庭中包肉馅饺子和蛋馅饺子的家庭分布在8栋楼内的住户数记录为如图所示的茎叶图,已知肉馅饺子数的中位数为10,蛋馅饺子数的平均数为5,求该小区包肉馅饺子的户数;
(2)现从包肉馅饺子的家庭中随机抽取100个家庭调查包饺子的用肉量(单位:
)得到了如图所示的频率分布直方图,若用肉量在第1小组
内的户数为
(
为茎叶图中的
),试估计该小区过年时各户用于包饺子的平均用肉量(各小组数据以组中值为代表).
(1)现根据饺子的不同味道用分层抽样的方法从该小区随机抽样抽取

(2)现从包肉馅饺子的家庭中随机抽取100个家庭调查包饺子的用肉量(单位:






某商场在国庆黄金周的促销活动中,对10月2日9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为( )


A.12万元 | B.10万元 | C.8万元 | D.6万元 |