- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在某次期末考试中,从高一年级中抽取60名学生的数学成绩(均为整数)分段为
后,部分频率分布直方图如图.观察图形,回答下列问题:

(1)求分数在
内的频率,并补全这个频率分布直方图;
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试中全年级数学成绩的平均分.


(1)求分数在

(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试中全年级数学成绩的平均分.
为了解学生身高情况,某校以
的比例对全校1000名学生按性别进行分层抽样调查,已知男女比例为
,测得男生身高情况的频率分布直方图(如图所示):

(1)计算所抽取的男生人数,并估计男生身高的中位数(保留两位小数);
(2)从样本中身高在
之间的男生中任选2人,求至少有1人身高在
之间的概率.



(1)计算所抽取的男生人数,并估计男生身高的中位数(保留两位小数);
(2)从样本中身高在


据统计,截至2016年底全国微信注册用户数量已经突破9.27亿.为调查大学生这个微信用户群体中每人拥有微信群的数量,现从某市大学生中随机抽取100位同学进行了抽样调查,结果如下:

(1)求
,
,
的值及样本中微信群个数超过12的概率;
(2)若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过12的概率;
(3)以(1)中的频率作为概率,若从全市大学生中随机抽取3人,记
表示抽到的是微信群个数超过12的人数,求
的分布列及数学期望
.

(1)求



(2)若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过12的概率;
(3)以(1)中的频率作为概率,若从全市大学生中随机抽取3人,记



在某次飞行航程中遭遇恶劣气候,55名男乘客中有24名晕机,34名女乘客中有8名晕机,在检验这些乘客晕机是否与性别有关时,采用的数据分析方法应是( )
A.频率分布直方图 | B.回归分析 | C.独立性检验 | D.用样本估计总体 |
河南多地遭遇跨年霾,很多学校调整元旦放假时间,提前放假让学生们在家躲霾,郑州市根据《郑州市人民政府办公厅关于将重污染天气黄色预警升级为红色预警的通知》,自12月29日12时将黄色预警升级为红色预警,12月30日0时启动I级响应,明确要求“幼儿园、中小学等教育机构停课,停课不停学”学生和家长对停课这一举措褒贬不一,有为了健康赞成的,有怕耽误学习不赞成的,某调查机构为了了解公众对该举措的态度,随机调查采访了50人,将调查情况整理汇总成下表:

(1)请在图中完成被调查人员年龄的频率分布直方图;
(2)若从年龄在
,
两组采访对象中各随机选取2人进行深度跟踪调查,选中4人中不赞成这项举措的人数为
,求随机变量
的分布列和数学期望.
年龄(岁) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 4 | 6 | 9 | 6 | 3 | 4 |

(1)请在图中完成被调查人员年龄的频率分布直方图;
(2)若从年龄在




(题文)(2017新课标全国II理科)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg).其频率分布直方图如下:

(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50 kg,新养殖法的箱产量不低于50 kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).
附:
,

(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50 kg,新养殖法的箱产量不低于50 kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
| 箱产量<50 kg | 箱产量≥50 kg |
旧养殖法 | | |
新养殖法 | | |
(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).
附:


在某单位的职工食堂中,食堂每天以
元/个的价格从面包店购进面包,然后以
元/个的价格出售.如果当天卖不完,剩下的面包以
元/个的价格卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了
个面包,以
(单位:个,
)表示面包的需求量,
(单位:元)表示利润.

(Ⅰ)求
关于
的函数解析式;
(Ⅱ)求食堂每天面包需求量的中位数;
(Ⅲ)根据直方图估计利润
不少于
元的概率;








(Ⅰ)求


(Ⅱ)求食堂每天面包需求量的中位数;
(Ⅲ)根据直方图估计利润


某区工商局、消费者协会在
月
号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的群众中随机抽取
名群众,按他们的年龄分组:第
组
,第
组
,第
组
,第
组
,第
组
,得到的频率分布直方图如图所示.

(Ⅰ)若电视台记者要从抽取的群众中选
人进行采访,求被采访人恰好在第
组或第
组的概率;
(Ⅱ)已知第
组群众中男性有
人,组织方要从第
组中随机抽取
名群众组成维权志愿者服务队,求至少有两名女性的概率.














(Ⅰ)若电视台记者要从抽取的群众中选



(Ⅱ)已知第



