- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为
,
,
,
,
,
.已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____.







如图是某路段的一个检测点对200辆汽车的车速进行检测所得结果的频率分布直方图,则下列说法正确的是( )


A.平均数为62.5 | B.中位数为62.5 | C.众数为60和70 | D.以上都不对 |
学校将高二年级某班级50位同学期中考试数学成绩(均为整数)分为7组
进行统计,得到如图所示的频率分布直方图.观察图中信息,回答下列问题.

(Ⅰ)试估计该班级同学数学成绩的平均分;
(Ⅱ)先准备从该班级数学成绩不低于130分的同学中随机选出2人参加某活动,求选出的两人在同一组的概率.


(Ⅰ)试估计该班级同学数学成绩的平均分;
(Ⅱ)先准备从该班级数学成绩不低于130分的同学中随机选出2人参加某活动,求选出的两人在同一组的概率.
从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间
内的频率之比为
.

(1)求这些产品质量指标值落在区间
内的频率;
(2)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间
内的产品件数为
,求
的分布列与数学期望.



(1)求这些产品质量指标值落在区间

(2)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间



“公益行”是由某公益慈善基金发起并主办的一款将用户的运动数据转化为公益步数的捐助公益项目的产品,捐助规则是满10000步方可捐助且个人捐出10000步等价于捐出1元,现粗略统计该项目中其中200名的捐助情况表如下:
(1)将捐款额在200元以上的人称为“健康大使”,请在现有的“健康大使”中随机抽取2人,求捐款额在
之间人数
的分布列;
(2)为鼓励更多的人来参加这项活动,该公司决定对捐款额在100元以上的用户实行红包奖励,具体奖励规则如下:捐款额在
的奖励红包5元;捐款额在
的奖励红包8元;捐款额在
的奖励红包10元;捐款额大于250的奖励红包15元.已知该活动参与人数有40万人,将频率视为概率,试估计该公司要准备的红包总金额.
捐款金额(单位:元) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
捐款人数 | 4 | 152 | 26 | 10 | 3 | 5 |
(1)将捐款额在200元以上的人称为“健康大使”,请在现有的“健康大使”中随机抽取2人,求捐款额在


(2)为鼓励更多的人来参加这项活动,该公司决定对捐款额在100元以上的用户实行红包奖励,具体奖励规则如下:捐款额在



为了解某市居民用水情况,通过抽样,获得了
位居民某年的月均用水量(单位:吨),将数据分成
组,绘制了如图所示的频率分布直方图,由图可知,居民月均用水量的众数、中位数的估计值分别为( )





A.![]() | B.![]() | C.![]() | D.![]() |
某校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是
,样本数据分组为
,
,
,
,
,根据直方图,这200名学生中每周的自习时间不少于24小时的人数是( )








A.76 | B.92 | C.108 | D.114 |
已知某中学联盟举行了一次“盟校质量调研考试”活动,为了解本次考试学生的某学科成绩情况,从中抽取部分学生的分数(满分为
分,得分取正整数,抽取学生的分数均在
之内)作为样本(样本容量为
)进行统计,按照
的分组作出频率分布直方图,并作出样本分数的茎叶图(茎叶图中仅列出了得分在
的数据)

(Ⅰ)求样本容量
和频率分布直方图中的
的值;
(Ⅱ)在选取的样本中,从成绩在
分以上(含
分)的学生中随机抽取
名学生参加“省级学科基础知识竞赛”,求所抽取的
名学生中恰有一人得分在
内的概率.






(Ⅰ)求样本容量


(Ⅱ)在选取的样本中,从成绩在





某班50名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].从样本成绩不低于80分的学生中随机选取2人,记这2人成绩在90分以上(含90分)的人数为ξ,则ξ的数学期望为( )

A.![]() | B.![]() | C.![]() | D.![]() |
对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:

(1)[25,30)年龄组对应小矩形的高度为________;
(2)据此估计该市“四城同创”活动中志愿者年龄在[25,35)的人数为________.

(1)[25,30)年龄组对应小矩形的高度为________;
(2)据此估计该市“四城同创”活动中志愿者年龄在[25,35)的人数为________.