- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
进入
月份,香港大学自主招生开始报名,“五校联盟”统一对五校高三学生进行综合素质测试,在所有参加测试的学生中随机抽取了部分学生的成绩,得到如图所示的成绩频率分布直方图:

(1)估计五校学生综合素质成绩的平均值;
(2)某校决定从本校综合素质成绩排名前
名同学中,推荐
人参加自主招生考试,若已知
名同学中有
名理科生,2名文科生,试求这3人中含文科生的概率.


(1)估计五校学生综合素质成绩的平均值;
(2)某校决定从本校综合素质成绩排名前




某农科站技术员为了解某品种树苗的生长情况,在该批树苗中随机抽取一个容量为
的样本,测量树苗高度(单位:
).经统计,高度均在区间
内,将其按
,
,
,
,
,
分成
组,制成如图所示的频率分布直方图,其中高度不低于
的树苗为优质树苗.

(1)求频率分布直方图中
的值;
(2)已知所抽取的这
棵树苗来自于甲、乙两个地区,部分数据如下
列联表所示,将列联表补充完整,并根据列联表判断是否有
的把握认为优质树苗与地区有关?
附:












(1)求频率分布直方图中

(2)已知所抽取的这



| 甲地区 | 乙地区 | |
优质树苗 | ![]() | | |
非优质树苗 | | ![]() | |
合计 | | | |
附:

![]() | ![]() | ![]() | ![]() | ![]() |
某农科站技术员为了解某品种树苗的生长情况,在该批树苗中随机抽取一个容量为100的样本,测量树苗高度(单位:
).经统计,高度在区间
内,将其按
,
,
,
,
,
分成6组,制成如图所示的频率分布直方图,其中高度不低于
的树苗为优质树苗.

附:
,其中
(1)求频率分布直方图中
的值;
(2)已知所抽取的这100棵树苗来自于甲、乙两个地区,部分数据如下
列联表所示,将列联表补充完整,并根据列联表判断是否有
%的把握认为优质树苗与地区有关?










附:


![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
(1)求频率分布直方图中

(2)已知所抽取的这100棵树苗来自于甲、乙两个地区,部分数据如下


| 甲地区 | 乙地区 | 合计 |
优质树苗 | 5 | | |
非优质树苗 | | 25 | |
合计 | | | |
某房产销售公司从登记购房的客户中随机选取了50名客户进行调查,按他们购一套房的价格(万元)分成6组:
,
,
,
,
,
得到频率分布直方图如图所示.用频率估计概率.

房产销售公司每卖出一套房,房地产商给销售公司的佣金如下表(单位:万元):
(1)求
的值;
(2)求房产销售公司卖出一套房的平均佣金;
(3)若该销售公司平均每天销售4套房,请估计公司月(按30天计)利润(利润=总佣金-销售成本).
该房产销售公司每月(按30天计)的销售成本占总佣金的百分比按下表分段累计计算:







房产销售公司每卖出一套房,房地产商给销售公司的佣金如下表(单位:万元):
房价区间 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
佣金收入 | 1 | 2 | 3 | 4 | 5 | 6 |
(1)求

(2)求房产销售公司卖出一套房的平均佣金;
(3)若该销售公司平均每天销售4套房,请估计公司月(按30天计)利润(利润=总佣金-销售成本).
该房产销售公司每月(按30天计)的销售成本占总佣金的百分比按下表分段累计计算:
月总佣金 | 不超过100万元的部分 | 超过100万元至200万元的部分 | 超过200万元至300万元的部分 | 超过300万元的部分 |
销售成本占 佣金比例 | ![]() | ![]() | ![]() | ![]() |
某企业经过短短几年的发展,员工近百人.不知何因,人员虽然多了,但员工的实际工作效率还不如从前.
年
月初,企业领导按员工年龄从企业抽选
位员工交流,并将被抽取的员工按年龄(单位:岁)分为四组:第一组
,第二组
,第三组
,第四组
,且得到如下频率分布直方图:

(1)求实数
的值;
(2)若用简单随机抽样方法从第二组、第三组中再随机抽取
人作进一步交流,求“被抽取得
人均来自第二组”的概率.








(1)求实数

(2)若用简单随机抽样方法从第二组、第三组中再随机抽取


在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如右面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120 km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有( )


A.30辆 | B.1700辆 | C.170辆 | D.300辆 |
某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:

(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;
(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;

(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;
(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;
某校命制了一套调查问卷(试卷满分均为100分),并对整个学校的学生进行了测试,先从这些学生的成绩中随机抽取了50名学生的成绩,按照
分成5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分)

(1)求频率分布直方图中的
的值,并估计50名学生的成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表)
(2)用样本估计总体,若该校共有2000名学生,试估计该校这次成绩不低于70分的人数.


(1)求频率分布直方图中的

(2)用样本估计总体,若该校共有2000名学生,试估计该校这次成绩不低于70分的人数.
《汉字听写大会》不断创收视新高,为了避免“书写危机”,弘扬传统文化,某市大约10万名市民进行了汉字听写测试.现从某社区居民中随机抽取50名市民的听写测试情况,发现被测试市民正确书写汉字的个数全部在160到184之间,将测试结果按如下方式分成六组:第1组
,第2组
,…,第6组
,如图是按上述分组方法得到的频率分布直方图.

(1)若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第2组或第6组的概率;
(2)试估计该市市民正确书写汉字的个数的众数与中位数;
(3)已知第4组市民中有3名男性,组织方要从第4组中随机抽取2名市同组成弘扬传统文化宣传队,求至少有1名女性市民的概率.




(1)若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第2组或第6组的概率;
(2)试估计该市市民正确书写汉字的个数的众数与中位数;
(3)已知第4组市民中有3名男性,组织方要从第4组中随机抽取2名市同组成弘扬传统文化宣传队,求至少有1名女性市民的概率.
某校从高一年级学生中随机抽取
名学生,将他们的期中考试数学成绩(满分
分,成绩均为不低于
分的整数)分成六段:
,
,…,
后得到如图的频率分布直方图.

(1)求图中实数
的值;
(2)若从数学成绩在
与
两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于
的概率.







(1)求图中实数

(2)若从数学成绩在


