- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在
,
,
,
,
,
(单位:克)中,经统计的频率分布直方图如图所示.

(1)估计这组数据的平均数(同一组中的数据以这组数据所在区间中点的值作代表);
(2)现按分层抽样从质量为[200,250),[250,300)的芒果中随机抽取5个,再从这5个中随机抽取2个,求这2个芒果都来自同一个质量区间的概率;
(3)某经销商来收购芒果,同一组中的数据以这组数据所在区间中点的值作代表,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出以下两种收购方案:
方案①:所有芒果以9元/千克收购;
方案②:对质量低于250克的芒果以2元/个收购,对质量高于或等于250克的芒果以3元/个收购.
通过计算确定种植园选择哪种方案获利更多.
参考数据:
.







(1)估计这组数据的平均数(同一组中的数据以这组数据所在区间中点的值作代表);
(2)现按分层抽样从质量为[200,250),[250,300)的芒果中随机抽取5个,再从这5个中随机抽取2个,求这2个芒果都来自同一个质量区间的概率;
(3)某经销商来收购芒果,同一组中的数据以这组数据所在区间中点的值作代表,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出以下两种收购方案:
方案①:所有芒果以9元/千克收购;
方案②:对质量低于250克的芒果以2元/个收购,对质量高于或等于250克的芒果以3元/个收购.
通过计算确定种植园选择哪种方案获利更多.
参考数据:

对某种电子元件的使用寿命进行跟踪调查,所得样本的频率分布直方图如图所示,由图可知,这一批电子元件中使用寿命在100~300 h的电子元件的数量与使用寿命在300~600 h的电子元件的数量的比是( ).


A.![]() | B.![]() | C.![]() | D.![]() |
世界军人运动会,简称“军运会”,每四年举办一届,会期7到10天,比赛设有27个大项,参赛规模约100多个国家近10000余人,规模仅次于奥运会,根据各方达成共识,军运会于2019年10月18日至27日在湖北武汉举行,赛期10天,为了军运会顺利召开,特招聘了3万名志愿者.某部门为了了解志愿者的基本情况,调查了其中100名志愿者的年龄,得到了他们年龄的中位数为34岁,年龄在
岁内的人数为15人,并根据调查结果画出如图所示的频率分布直方图:

(1)求
,
的值并估算出志愿者的平均年龄(同一组的数据用该组区间的中点值代表);
(2)这次军运会志愿者主要通过直接到武汉军运会执委会志愿者部现场报名和登录第七届世界军运会官网报名,即现场和网络两种方式报名调查.这100位志愿者的报名方式部分数据如下表所示,完善下面的表格,通过计算说明能否在犯错误的概率不超过0.001的前提下,认为“选择哪种报名方式与性别有关系”?
参考公式及数据:
,其中
.


(1)求


(2)这次军运会志愿者主要通过直接到武汉军运会执委会志愿者部现场报名和登录第七届世界军运会官网报名,即现场和网络两种方式报名调查.这100位志愿者的报名方式部分数据如下表所示,完善下面的表格,通过计算说明能否在犯错误的概率不超过0.001的前提下,认为“选择哪种报名方式与性别有关系”?
| 男性 | 女性 | 总计 |
现场报名 | | | 50 |
网络报名 | 31 | | |
总计 | | 50 | |
参考公式及数据:


![]() | 0.05 | 0.01 | 0.005 | 0.001 |
![]() | 3.841 | 6.635 | 7.879 | 10.828 |
某中学学校对高三年级文科学生进行了一次自主学习习惯的自评满意度的调查,按系统抽样方法得到了一个自评满意度(百分制,单位:分)的样本,如图分别是该样本数据的茎叶图和频率分布直方图(都有部分缺失).

(1)完善频率分布直方图(需写出计算过程);
(2)分别根据茎叶图和频率分布直方图求出样本数据的中位数m1和m2,并指出选用哪一个数据来估计总体的中位数更合理(需要叙述理由).

(1)完善频率分布直方图(需写出计算过程);
(2)分别根据茎叶图和频率分布直方图求出样本数据的中位数m1和m2,并指出选用哪一个数据来估计总体的中位数更合理(需要叙述理由).
在样本的频率分布直方图中共有
个小矩形,若中间一个小矩形的面积等于其余
个小矩形面积的
,且样本容量为3200,则中间一组的频数为__________.



为了估计某校某次数学考试的情况,现从该校参加考试的600名学生中随机抽出60名学生,其数学成绩(百分制)均在
内,将这些成绩分成六组
…
,得到如图所示的部分频率分布直方图.

(1)求抽出的60名学生中数学成绩在
内的人数;
(2)若规定成绩不小于85分为优秀,则根据频率分布直方图,估计该校参加考试的学生数学成绩为优秀的人数;
(3)试估计抽出的60名学生的数学成绩的中位数.




(1)求抽出的60名学生中数学成绩在

(2)若规定成绩不小于85分为优秀,则根据频率分布直方图,估计该校参加考试的学生数学成绩为优秀的人数;
(3)试估计抽出的60名学生的数学成绩的中位数.
某校高三年级有400名学生,在一次数学测试中,成绩都在
(单位:分)内,其频率分布直方图如图,则这次测试数学成绩不低于100分的人数为_____ .


从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:

(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;
(2)求频率分布直方图中的a,b的值;

(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;
(2)求频率分布直方图中的a,b的值;
从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到300度之间,频率分布直方图所示,则在这些用户中,用电量落在区间
内的户数为( )



A.![]() | B.![]() | C.![]() | D.![]() |
为了了解四川省各景点在大众中的熟知度,随机对
岁的人群抽样了
人,回答问题“四川省有哪几个著名的旅游景点?”统计结果如表.

(1)分别求出
的值;
(2)从第
,
,
组回答正确的人中用分层抽样的方法抽取
人,求第
,
,
组每组各抽取多少人?
(3)通过直方图求出年龄的众数,平均数.



组号 | 分组 | 回答正确的人数 | 回答正确的人数 占本组的频率 |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |
(1)分别求出

(2)从第







(3)通过直方图求出年龄的众数,平均数.