- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为提高城市居民生活幸福感,某城市公交公司大力确保公交车的准点率,减少居民乘车候车时间为此,该公司对某站台乘客的候车时间进行统计乘客候车时间受公交车准点率、交通拥堵情况、节假日人流量增大等情况影响在公交车准点率正常、交通拥堵情况正常、非节假日的情况下,乘客候车时间随机变量
满足正态分布
在公交车准点率正常、交通拥堵情况正常、非节假日的情况下,调查了大量乘客的候车时间,经过统计得到如图频率分布直方图.

(1)在直方图各组中,以该组区间的中点值代表该组中的各个值,试估计
的值;
(2)在统计学中,发生概率低于千分之三的事件叫小概率事件,一般认为,在正常情况下,一次试验中,小概率事件是不能发生的在交通拥堵情况正常、非节假日的某天,随机调查了该站的10名乘客的候车时间,发现其中有3名乘客候车时间超过15分钟,试判断该天公交车准点率是否正常,说明理由.
(参考数据:
,
,
,
,
)



(1)在直方图各组中,以该组区间的中点值代表该组中的各个值,试估计

(2)在统计学中,发生概率低于千分之三的事件叫小概率事件,一般认为,在正常情况下,一次试验中,小概率事件是不能发生的在交通拥堵情况正常、非节假日的某天,随机调查了该站的10名乘客的候车时间,发现其中有3名乘客候车时间超过15分钟,试判断该天公交车准点率是否正常,说明理由.
(参考数据:





已知某样本数据频率分布直方图共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形面积和的
,则中间一个小长方形的面积为______.

为降低空气污染,提高环境质量,政府决定对汽车尾气进行整治.某厂家生产甲、乙两种不同型号的汽车尾气净化器,为保证净化器的质量,分别从甲、乙两种型号的净化器中随机抽取100件作为样本进行产品性能质量评估,评估综合得分
都在区间
.已知评估综合得分与产品等级如下表:

根据评估综合得分,统计整理得到了甲型号的样本频数分布表和乙型号的样本频率分布直方图(图表如下).

甲型 乙型
(Ⅰ)从厂家生产的乙型净化器中随机抽取一件,估计这件产品为二级品的概率;
(Ⅱ)从厂家生产的乙型净化器中随机抽取3件,设随机变量
为其中二级品的个数,求
的分布列和数学期望;
(Ⅲ)根据图表数据,请自定标准,对甲、乙两种型号汽车尾气净化器的优劣情况进行比较.



根据评估综合得分,统计整理得到了甲型号的样本频数分布表和乙型号的样本频率分布直方图(图表如下).


甲型 乙型
(Ⅰ)从厂家生产的乙型净化器中随机抽取一件,估计这件产品为二级品的概率;
(Ⅱ)从厂家生产的乙型净化器中随机抽取3件,设随机变量


(Ⅲ)根据图表数据,请自定标准,对甲、乙两种型号汽车尾气净化器的优劣情况进行比较.
[2014·泰州模拟]如图是某学校学生体重的频率分布直方图,已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为10,则抽取的学生人数是________.

某网站推出了关于扫黑除恶情况的调查,调查数据表明,扫黑除恶仍是百姓最为关心的热点,参与调查者中关注此问题的约占
.现从参与关注扫黑除恶的人群中随机选出
人,并将这
人按年龄分组:第
组
,第
组
,第
组
,第
组
,第
组
,得到的频率分布直方图如图所示.

(1)求出
的值;
(2)求这
人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位).














(1)求出

(2)求这

某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组
,第二组
,
,第五组
.下图是按上述分组方法得到的频率分布直方图.按上述分组方法得到的频率分布直方图.

(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(2)设m,n表示该班某两位同学的百米测试成绩,且已知
求事件“
”发生的概率.





(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(2)设m,n表示该班某两位同学的百米测试成绩,且已知


某花圃为提高某品种花苗质量,开展技术创新活动,在
,
实验地分别用甲、乙方法培训该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为80及以上的花苗为优质花苗.

(1)求图中
的值;
(2)填写下面的列联表,并判断是否有90%的把握认为优质花苗与培育方法有关.
附:下面的临界值表仅供参考.
(参考公式:
,其中
.)



(1)求图中

(2)填写下面的列联表,并判断是否有90%的把握认为优质花苗与培育方法有关.
| 优质花苗 | 非优质花苗 | 合计 |
甲培育法 | 20 | | |
乙培育法 | | 10 | |
合计 | | | |
附:下面的临界值表仅供参考.
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:


为了比较注射
,
两种药物后产生的皮肤疱疹的面积,选200只家兔做实验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物
,另一组注射药物
.下表1和表2分别是注射药物
和药物
后的实验结果.(疱疹面积单位:
)
表1:注射药物
后皮肤疱疹面积的频数分布表
表2:注射药物
后皮肤疱疹面积的频数分布表
(1)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;
(2)完成下面
列联表,并回答能否有99.9%的把握认为“注射药物
后的疱疹面积与注射药物
后的疱疹面积有差异”.

附:







表1:注射药物

疱疹面积 | ![]() | ![]() | ![]() | ![]() |
频数 | 30 | 40 | 20 | 10 |
表2:注射药物

疱疹面积 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 10 | 25 | 20 | 30 | 15 |
(1)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;
(2)完成下面




| 疱疹面积小于![]() | 疱疹面积不小于![]() | 合计 |
注射药物![]() | | | |
注射药物![]() | | | |
合计 | | | |
附:

![]() | 0.100 | 0.050 | 0.025 | 0.01 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |