- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某服装加工厂为了提高市场竞争力,对其中一台生产设备提出了甲、乙两个改进方案:甲方案是引进一台新的生产设备,需一次性投资1000万元,年生产能力为30万件;乙方案是将原来的设备进行升级改造,需一次性投入700万元,年生产能力为20万件.根据市场调查与预测,该产品的年销售量的频率分布直方图如图所示,无论是引进新生产设备还是改造原有的生产设备,设备的使用年限均为6年,该产品的销售利润为15元/件(不含一次性设备改进投资费用).

(1)根据年销售量的频率分布直方图,估算年销量的平均数
(同一组中的数据用该组区间的中点值作代表);
(2)将年销售量落入各组的频率视为概率,各组的年销售量用该组区间的中点值作年销量的估计值,并假设每年的销售量相互独立.
①根据频率分布直方图估计年销售利润不低于270万元的概率:
②若以该生产设备6年的净利润的期望值作为决策的依据,试判断该服装厂应选择哪个方案.(6年的净利润=6年销售利润-设备改进投资费用)

(1)根据年销售量的频率分布直方图,估算年销量的平均数

(2)将年销售量落入各组的频率视为概率,各组的年销售量用该组区间的中点值作年销量的估计值,并假设每年的销售量相互独立.
①根据频率分布直方图估计年销售利润不低于270万元的概率:
②若以该生产设备6年的净利润的期望值作为决策的依据,试判断该服装厂应选择哪个方案.(6年的净利润=6年销售利润-设备改进投资费用)
某市一中学高三年级统计学生的最近20次数学周测成绩(满分150分),现有甲乙两位同学的20次成绩如茎叶图所示:

(1)根据茎叶图求甲乙两位同学成绩的中位数,并据此判断甲乙两位同学的成绩谁更好?
(2)将同学乙的成绩的频率分布直方图补充完整;
(3)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,设选出的2个成绩中含甲的成绩的个数为
,求
的分布列及数学期望.

(1)根据茎叶图求甲乙两位同学成绩的中位数,并据此判断甲乙两位同学的成绩谁更好?
(2)将同学乙的成绩的频率分布直方图补充完整;
(3)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,设选出的2个成绩中含甲的成绩的个数为


某快递公司收取快递费用的标准是:重量不超过
的包裹收费10元;重量超过
的包裹,除收费10元之外,超过
的部分,每超出
(不足
,按
计算)需要再收费5元.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).

(1)求这60天每天包裹数量的平均值和中位数;
(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.已知公司前台有工作人员3人,每人每天工资100元,以样本估计总体,试估计该公司每天的利润有多少元?
(3)小明打算将
四件礼物随机分成两个包裹寄出,且每个包裹重量都不超过
,求他支付的快递费为45元的概率.







(1)求这60天每天包裹数量的平均值和中位数;
(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.已知公司前台有工作人员3人,每人每天工资100元,以样本估计总体,试估计该公司每天的利润有多少元?
(3)小明打算将






组号 | 分组 | 频数 | 频率 |
1 | [0,5) | 5 | 0.05 |
2 | [5,10) | a | 0.35 |
3 | [10,15) | 30 | b |
4 | [15,20) | 20 | 0.20 |
5 | [20,25] | 10 | 0.10 |
合计 | 100 | 1 |
(1)求


(2)作出这些数据的频率分布直方图

(3)假设每组数据组间是平均分布的,试估计该组数据的平均数和中位数.(同一组中的数据用该组区间的中点值作代表)
在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于
分的选手定为合格选手,直接参加第二轮比赛,大于等于
分的选手将直接参加竞赛选拔赛.已知成绩合格的
名参赛选手成绩的频率分布直方图如图所示,其中
的频率构成等比数列.

(1)求
的值;
(2)估计这
名参赛选手的平均成绩;
(3)根据已有的经验,参加竞赛选拔赛的选手能够进入正式竞赛比赛的概率为
,假设每名选手能否通过竞赛选拔赛相互独立,现有
名选手进入竞赛选拔赛,记这
名选手在竞赛选拔赛中通过的人数为随机变量
,求
的分布列和数学期望.





(1)求

(2)估计这

(3)根据已有的经验,参加竞赛选拔赛的选手能够进入正式竞赛比赛的概率为





如图是某校高三(1)班上学期期末数学考试成绩整理得到的频率分布直方图,由此估计该班学生成绩的众数、中位数分别为( )


A.![]() ![]() | B.![]() ![]() |
C.![]() ![]() | D.![]() ![]() |
由甲、乙、丙三个人组成的团队参加某项闯关游戏,第一关解密码锁,3个人依次进行,每人必须在1分钟内完成,否则派下一个人.3个人中只要有一人能解开密码锁,则该团队进入下一关,否则淘汰出局.根据以往100次的测试,分别获得甲、乙解开密码锁所需时间的频率分布直方图.

(1)若甲解开密码锁所需时间的中位数为47,求
、
的值,并分别求出甲、乙在1分钟内解开密码锁的频率;
(2)若以解开密码锁所需时间位于各区间的频率代替解开密码锁所需时间位于该区间的概率,并且丙在1分钟内解开密码锁的概率为0.5,各人是否解开密码锁相互独立.
①按乙丙甲的先后顺序和按丙乙甲的先后顺序哪一种可使派出人员数目的数学期望更小.
②试猜想:该团队以怎样的先后顺序派出人员,可使所需派出的人员数目
的数学期望达到最小,不需要说明理由.

(1)若甲解开密码锁所需时间的中位数为47,求


(2)若以解开密码锁所需时间位于各区间的频率代替解开密码锁所需时间位于该区间的概率,并且丙在1分钟内解开密码锁的概率为0.5,各人是否解开密码锁相互独立.
①按乙丙甲的先后顺序和按丙乙甲的先后顺序哪一种可使派出人员数目的数学期望更小.
②试猜想:该团队以怎样的先后顺序派出人员,可使所需派出的人员数目

某研究机构为了了解各年龄层对高考改革方案的关注程度,随机选取了200名年龄在
内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(分第一~五组区间分别为
,
,
,
,
,
).

(1)求选取的市民年龄在
内的人数;
(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人在座谈会中作重点发言,求作重点发言的市民中至少有一人的年龄在
内的概率.








(1)求选取的市民年龄在

(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人在座谈会中作重点发言,求作重点发言的市民中至少有一人的年龄在

如下图是某校高三(1)班的一次数学知识竞赛成绩的茎叶图(图中仅列出
,
的数据)和频率分布直方图.

(1)求分数在
的频率及全班人数;
(2)求频率分布直方图中的
;
(3)若要从分数在
之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在
之间的概率.



(1)求分数在

(2)求频率分布直方图中的

(3)若要从分数在


某校数学兴趣小组对高二年级学生的期中考试数学成绩(满分100分)进行数据分析,将全部的分数按照
,
,
,
,
分成5组,得到如图所示的频率分布直方图.若成绩在80分及以上的学生人数为360,估计该校高二年级学生人数约为( )







A.1200 | B.1440 | C.7200 | D.12000 |