- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下图是2014年抚顺市举办“我看抚顺改革开放三十年”演讲比赛大赛上,七位评委为某位选手打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为()


A.5;1.6 | B.85;1.6 | C.85;0.4 | D.5;0.4 |
某单位有青年职工、中年职工、老年职工共900人,其中青年职工450人,为迅速了解职工的家庭状况,采用分层抽样的方法从中抽取样本,若样本中的青年职工为15人,则抽取的样本容量为 .
(本小题满分14分)下面的茎叶图记录了甲、乙两代表队各10名同学在一次英语听力比赛中的成绩(单位:分).已知甲代表队数据的中位数为76,乙代表队数据的平均数是75.

(1)求
,
的值;
(2)若分别从甲、乙两队随机各抽取1名成绩不低于80分的学生,求抽到的学生中,甲队学生成绩不低于乙队学生成绩的概率;
(3)判断甲、乙两队谁的成绩更稳定,并说明理由(方差较小者稳定).

(1)求


(2)若分别从甲、乙两队随机各抽取1名成绩不低于80分的学生,求抽到的学生中,甲队学生成绩不低于乙队学生成绩的概率;
(3)判断甲、乙两队谁的成绩更稳定,并说明理由(方差较小者稳定).
甲、乙两名选手参加歌手大赛时,5名评委打的分数用茎叶图表示(如下图),
分别表示甲、乙选手的标准差,则
与
的关系是





A.![]() | B.![]() |
C.![]() | D.不能确定 |
14.某棉纺厂为了了解一批棉花的质量,从中随机抽测了100根棉花纤维的长度(棉花纤维所得数据均在区间[5,40]中,其频率分布直方图如图所示,则在抽测的100根中___________根棉花纤维的长度小于15mm.


(本小题满分13分)某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,整理得到数据分组及频率分布表和频率分布直方图:

(Ⅰ)写出频率分布直方图中的
的值,并作出甲种酸奶日销售量的频率分布直方图;

(Ⅱ)记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为
,
,试比较
与
的大小;(只需写出结论)
(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计乙种酸奶在未来一个月(按30天计算)的销售总量.
分组(日销售量) | 频率(甲种酸奶) |
[ 0,10] | 0.10 |
(10,20] | 0.20 |
(20,30] | 0.30 |
(30,40] | 0.25 |
(40,50] | 0.15 |

(Ⅰ)写出频率分布直方图中的


(Ⅱ)记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为




(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计乙种酸奶在未来一个月(按30天计算)的销售总量.
在调查高中学生的近视情况中,某校高一年级145名男生中有60名近视,120名女生中有70名近视.在检验这些高中学生眼睛近视是否与性别相关时,常采用的数据分析方法是( )
A.频率分布直方图 | B.独立性检验 |
C.回归分析 | D.茎叶图 |
某灯具厂分别在南方和北方地区各建一个工厂,生产同一种灯具(售价相同),为了了解北方与南方这两个工厂所生产得灯具质量状况,分别从这两个工厂个抽查了25件灯具进行测试,结果如下:

(Ⅰ)根据频率分布直方图,请分别求出北方、南方两个工厂灯具的平均使用寿命;
(Ⅱ)某学校欲采购灯具,同时试用了南北两工厂的灯具各两件,试用500小时后,若北方工厂生产的灯具还能正常使用的数量比南方工厂多,该学校就准备采购北方工厂的灯具,否则就采购南方工厂的灯具,试估计该学校采购北方工厂的灯具的概率.(视频率为概率)

(Ⅰ)根据频率分布直方图,请分别求出北方、南方两个工厂灯具的平均使用寿命;
(Ⅱ)某学校欲采购灯具,同时试用了南北两工厂的灯具各两件,试用500小时后,若北方工厂生产的灯具还能正常使用的数量比南方工厂多,该学校就准备采购北方工厂的灯具,否则就采购南方工厂的灯具,试估计该学校采购北方工厂的灯具的概率.(视频率为概率)
把容量为100的某个样本数据分为10组,并填写频率分布表,若前七组的累积频率为0.79,而剩下三组的频数成公比大于2的整数等比数列,则剩下三组中频数最高的一组的频数为___________.
(本小题满分12分)据报道,某公司的33名职工的月工资(以元为单位)如下:
(1)求该公司职工月工资的平均数、中位数、众数;
(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是什么?(精确到元)
(3)你认为哪个统计量更能反映这个公司员工的工资水平?结合此问题谈一谈你的看法.
职务 | 董事长 | 副董事长 | 董事 | 总经理 | 经理 | 管理员 | 职员 |
人数 | 1 | 1 | 2 | 1 | 5 | 3 | 20 |
工资 | 5 500 | 5 000 | 3 500 | 3 000 | 2 500 | 2 000 | 1 500 |
(1)求该公司职工月工资的平均数、中位数、众数;
(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是什么?(精确到元)
(3)你认为哪个统计量更能反映这个公司员工的工资水平?结合此问题谈一谈你的看法.