- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图是1,2两组各7名同学体重(单位:kg)数据的茎叶图.设1,2两组数据的平均数依次为
1和
2,标准差依次为s1和s2,那么( )

(注:标准差
,其中
为x1,x2,…,xn的平均数)



(注:标准差


A.![]() ![]() |
B.![]() ![]() |
C.![]() ![]() |
D.![]() ![]() |
下图是某赛季甲、乙两名篮球运动员参加的每场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数之和是( )


A.65 | B.64 | C.63 | D.62 |
甲、乙两组各有三名同学,她们在一次测试中的成绩的茎叶图如图所示,如果分别从甲、乙两组中随机选取一名同学,则这两名同学的成绩之差的绝对值不超过3的概率是_________.

某校高三一次月考之后,为了为解数学学科的学习情况,现从中随机抽出若干名学生此次的数学成绩,按成绩分组,制成了下面频率分布表:
(1)试估计该校高三学生本次月考的平均分;
(2)如果把表中的频率近似地看作每个学生在这次考试中取得相应成绩的概率,那么从所有学生中采用逐个抽取的方法任意抽取3名学生的成绩,并记成绩落在
中的学生数为
,
求:①在三次抽取过程中至少有两次连续抽中成绩在
中的概率;
②
的分布列和数学期望.(注:本小题结果用分数表示)
组号 | 分组 | 频数 | 频率 |
第一组 | ![]() | 5 | 0.05 |
第二组 | ![]() | 35 | 0.35 |
第三组 | ![]() | 30 | 0.30 |
第四组 | ![]() | 20 | 0.20 |
第五组 | ![]() | 10 | 0.10 |
合计 | 100 | 1.00 |
(1)试估计该校高三学生本次月考的平均分;
(2)如果把表中的频率近似地看作每个学生在这次考试中取得相应成绩的概率,那么从所有学生中采用逐个抽取的方法任意抽取3名学生的成绩,并记成绩落在


求:①在三次抽取过程中至少有两次连续抽中成绩在

②

我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准
(吨),一位居民的月用水量不超过
的部分按平价收费,超出
的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照
,…,
分成9组,制成了如图所示的频率分布直方图.

(1)求直方图中
的值;
(2)若该市有110万居民,估计全市居民中月均用水量不低于3吨的人数,请说明理由;
(3)估计居民月均用水量的中位数(精确到0.01)






(1)求直方图中

(2)若该市有110万居民,估计全市居民中月均用水量不低于3吨的人数,请说明理由;
(3)估计居民月均用水量的中位数(精确到0.01)
下边茎叶图记录了甲、乙两组各6名学生在一次数学测试中的成绩(单位:分),已知甲组数据的众数为84,乙组数据的平均数即为甲组数据的中位数,则
的值分别为( )



A.4,5 | B.5,4 | C.4,4 | D.5,5 |
在某校组织的“共筑中国梦”竞赛活动中,甲、乙两班各有6名选手参赛,在第一轮笔试环节中,评委将他们的笔试成绩作为样本数据,绘制成如图所示的茎叶图,为了增加结果的神秘感,主持人故意没有给出甲、乙两班最后一位选手的成绩,知识告知大家,如果某位选手的成绩高于90分(不含90分),则直接“晋级”.

(1)求乙班总分超过甲班的概率;
(2)主持人最后宣布:甲班第六位选手的得分是90分,乙班第六位选手的得分是97分,
①请你从平均分和方差的角度来分析两个班的选手的情况;
②主持人从甲乙两班所有选手成绩中分别随机抽取2个,记抽取到“晋级”选手的总人数为
,求
的分布列及数学期望.

(1)求乙班总分超过甲班的概率;
(2)主持人最后宣布:甲班第六位选手的得分是90分,乙班第六位选手的得分是97分,
①请你从平均分和方差的角度来分析两个班的选手的情况;
②主持人从甲乙两班所有选手成绩中分别随机抽取2个,记抽取到“晋级”选手的总人数为

