- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某大型商场统计周一至周五某型号洗衣机的销售量(单位:台),得到如下茎叶图,则该样本的中位数与平均数之差是( )


A.6 | B.2 | C.-2 | D.-6 |
从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为
,
,中位数分别为
,
,则( )






A.![]() ![]() ![]() ![]() |
B.![]() ![]() ![]() ![]() |
C.![]() ![]() ![]() ![]() |
D.![]() ![]() ![]() ![]() |
学校从参加高二年级期末考试的学生中抽出一些学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),所得数据整理后,列出了如下频率分布表.

(1)在给出的样本频率分布表中,求A,B,C的值;
(2)补全频率分布直方图,并利用它估计全体高二年级学生期末数学成绩的众数、中位数;
(3)现从分数在[80,90),[90,100]的9名同学中随机抽取两名同学,求被抽取的两名学生分数均不低于90分的概率.
分组 | 频数 | 频率 |
[40,50) | A | 0.04 |
[50,60) | 4 | 0.08 |
[60,70) | 20 | 0.40 |
[70,80) | 15 | 0.30 |
[80,90) | 7 | B |
[90,100] | 2 | 0.04 |
合计 | C | 1 |

(1)在给出的样本频率分布表中,求A,B,C的值;
(2)补全频率分布直方图,并利用它估计全体高二年级学生期末数学成绩的众数、中位数;
(3)现从分数在[80,90),[90,100]的9名同学中随机抽取两名同学,求被抽取的两名学生分数均不低于90分的概率.
根据有关资料预测,某市下月1—14日的空气质量指数趋势如下图所示.,根据已知折线图,解答下面的问题:

(1)求污染指数的众数及前五天污染指数的平均值;(保留整数)
(2)为了更好发挥空气质量监测服务人民的目的,监测部门在发布空气质量指数的同时,也给出了出行建议,比如空气污染指数大于150时需要戴口罩,超过200时建议减少外出活动等等.如果某人事先没有注意到空气质量预报,而在1—12号这12天中随机选定一天,欲在接下来的两天中(不含选定当天)进行外出活动.求其外出活动的两天期间.
①恰好都遭遇重度及以上污染天气的概率;
②至少有一天能避开重度及以上污染天气的概率.
附:空气质量等级参考表:

(1)求污染指数的众数及前五天污染指数的平均值;(保留整数)
(2)为了更好发挥空气质量监测服务人民的目的,监测部门在发布空气质量指数的同时,也给出了出行建议,比如空气污染指数大于150时需要戴口罩,超过200时建议减少外出活动等等.如果某人事先没有注意到空气质量预报,而在1—12号这12天中随机选定一天,欲在接下来的两天中(不含选定当天)进行外出活动.求其外出活动的两天期间.
①恰好都遭遇重度及以上污染天气的概率;
②至少有一天能避开重度及以上污染天气的概率.
附:空气质量等级参考表:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
等级 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
某校为了了解学生对消防知识的了解情况,从高一年级和高二年级各选取100名同学进行消防知识竞赛.下图(1)和图(2)分别是对高一年级和高二年级参加竞赛的学生成绩按
分组,得到的频率分布直方图.

(1)请计算高一年级和高二年级成绩小于60分的人数;
(2)完成下面
列联表,并回答:有多大的把握可以认为“学生所在的年级与消防常识的了解存在相关性”?
附:临界值表及参考公式:
.


(1)请计算高一年级和高二年级成绩小于60分的人数;
(2)完成下面

| 成绩小于60分人数 | 成绩不小于60分人数 | 合计 |
高一 | | | |
高二 | | | |
合计 | | | |
附:临界值表及参考公式:

![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
某气象站统计了4月份甲、乙两地的天气温度(单位
),统计数据的茎叶图如图所示,

(1)根据所给茎叶图利用平均值和方差的知识分析甲,乙两地气温的稳定性;
(2)气象主管部门要从甲、乙两地各随机抽取一天的天气温度,若甲、乙两地的温度之和大于或等于
,则被称为“甲、乙两地往来温度适宜天气”,求“甲、乙两地往来温度适宜天气”的概率.


(1)根据所给茎叶图利用平均值和方差的知识分析甲,乙两地气温的稳定性;
(2)气象主管部门要从甲、乙两地各随机抽取一天的天气温度,若甲、乙两地的温度之和大于或等于

某市房管局为了了解该市市民
年
月至
年
月期间买二手房情况,首先随机抽样其中
名购房者,并对其购房面积
(单位:平方米,
)进行了一次调查统计,制成了如图
所示的频率分布直方图,接着调查了该市
年
月至
年
月期间当月在售二手房均价
(单位:万元/平方米),制成了如图
所示的散点图(图中月份代码
分别对应
年
月至
年
月).

(1)试估计该市市民的购房面积的中位数
;
(2)现采用分层抽样的方法从购房面积位于
的
位市民中随机抽取
人,再从这
人中随机抽取
人,求这
人的购房面积恰好有一人在
的概率;
(3)根据散点图选择
和
两个模型进行拟合,经过数据处理得到两个回归方程,分别为
和
,并得到一些统计量的值如下表所示:
请利用相关指数
判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测出
年
月份的二手房购房均价(精确到
)
(参考数据)
,
,
,
,
,
,
(参考公式)




















(1)试估计该市市民的购房面积的中位数

(2)现采用分层抽样的方法从购房面积位于







(3)根据散点图选择




| ![]() | ![]() |
![]() | 0.000591 | 0.000164 |
![]() | 0.006050 |
请利用相关指数




(参考数据)







(参考公式)

设一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上10,得到一组新数据,则所得新数据的平均数和方差分别是()
A.12.8 3.6 | B.2.8 13.6 | C.12.8 13.6 | D.13.6 12.8 |
对某同学的6次数学测试成绩进行统计,作出的茎叶图如图所示,给出关于该同学数学成绩的以下说法①中位数为84; ②众数为85;③平均数为85; ④极差为12.
其中,正确说法的序号是( )

其中,正确说法的序号是( )

A.①② | B.①③ | C.②④ | D.③④ |