- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某班同学利用国庆节进行社会实践,对
岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”.得到如下统计表和各年龄段人数频率分布直方图:

(1)补全频率分布直方图,并求n,a,p的值;
(2)求年龄段人数的中位数和众数;(直接写出结果即可)
(3)从
岁年龄段的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取3人作为领队,求选取的3名领队中年龄都在
岁的概率.

组数 | 分组 | 低碳组的人数 | 占本组的频率 |
第一组 | ![]() | 120 | 0.6 |
第二组 | ![]() | 195 | P |
第三组 | ![]() | 100 | 0.5 |
第四组 | ![]() | a | 0.4 |
第五组 | ![]() | 30 | 0.3 |
第六组 | ![]() | 15 | 0.3 |

(1)补全频率分布直方图,并求n,a,p的值;
(2)求年龄段人数的中位数和众数;(直接写出结果即可)
(3)从


某蔬果经销商销售某种蔬果,售价为每公斤25元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价以每公斤10元处理完.根据以往的销售情况,得到如图所示的频率分布直方图:

(1)根据频率分布直方图计算该种蔬果日需求量的平均数
(同一组中的数据用该组区间中点值代表);
(2)该经销商某天购进了250公斤这种蔬果,假设当天的需求量为
公斤
,利润为
元.求
关于
的函数关系式,并结合频率分布直方图估计利润
不小于1750元的概率.

(1)根据频率分布直方图计算该种蔬果日需求量的平均数

(2)该经销商某天购进了250公斤这种蔬果,假设当天的需求量为






甲、乙两人近五次某项测试成绩的得分情况如图所示,则( )


A.甲得分的平均数比乙的大 | B.乙的成绩更稳定 |
C.甲得分的中位数比乙的大 | D.甲的成绩更稳定 |
某中学举行了一次“环保知识竞赛”, 全校学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:


(1)求出
的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动
(ⅰ)求所抽取的2名同学中至少有1名同学来自第5组的概率;
(ⅱ)求所抽取的2名同学来自同一组的概率

组别 | 分组 | 频数 | 频率 |
第1组 | [50,60) | 8 | 0 16 |
第2组 | [60,70) | a | ▓ |
第3组 | [70,80) | 20 | 0 40 |
第4组 | [80,90) | ▓ | 0 08 |
第5组 | [90,100] | 2 | b |
| 合计 | ▓ | ▓ |

(1)求出

(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动
(ⅰ)求所抽取的2名同学中至少有1名同学来自第5组的概率;
(ⅱ)求所抽取的2名同学来自同一组的概率
某部门有8位员工,其中6位员工的月工资分别为8200,8300,8500,9100,9500,9600(单位:元),另两位员工的月工资数据不清楚,但两人的月工资和为17000元,则这8位员工月工资的中位数可能的最大值为( )
A.9100 | B.8800 | C.8700 | D.8500 |
某班60名学生期中考试数学成绩的频率分布直方图如下图所示.

(1)求图中a的值及这60名学生数学成绩的中位数;
(2)若规定成绩在80分以上为优良,求该班学生中成绩达到优良的人数.

(1)求图中a的值及这60名学生数学成绩的中位数;
(2)若规定成绩在80分以上为优良,求该班学生中成绩达到优良的人数.