- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校高三(1)班在一次单元测试中,每位同学的考试分数都在区间
内,将该班所有同学的考试分数分为七组:
,绘制出频率分布直方图如图所示,已知分数低于112 分的有18人,则分数不低于120分的人数为( )




A.10 | B.12 | C.20 | D.40 |
某学校艺术专业300名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:

(1)从总体的300名学生中随机抽取一人,估计其分数小于70的概率;
(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;
(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

(1)从总体的300名学生中随机抽取一人,估计其分数小于70的概率;
(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;
(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.
某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2017年1月至2019年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )


A.年接待游客量逐年增加 |
B.各年的月接待游客量高峰期大致在8月 |
C.2017年1月至12月月接待游客量的中位数为30万人 |
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 |
为迎接2022年北京冬季奥运会,普及冬奥知识,某校开展了“冰雪答题王”冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:
,
,
,
,
,
,得到如图所示的频率分布直方图.

(1)求
的值;
(2)估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);
(3)在抽取的100名学生中,规定:比赛成绩不低于80分为“优秀”,比赛成绩低于80分为“非优秀”.请将下面的2×2列联表补充完整,并判断是否有99.9%的把握认为“比赛成绩是否优秀与性别有关”?
参考公式及数据:







(1)求

(2)估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);
(3)在抽取的100名学生中,规定:比赛成绩不低于80分为“优秀”,比赛成绩低于80分为“非优秀”.请将下面的2×2列联表补充完整,并判断是否有99.9%的把握认为“比赛成绩是否优秀与性别有关”?
| 优秀 | 非优秀 | 合计 |
男生 | | 40 | |
女生 | | | 50 |
合计 | | | 100 |
参考公式及数据:

![]() | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
近年来,在新高考改革中,打破文理分科的“
”模式初露端倪,其中语、数、外三门课为必考科目,剩下三门为选考科目选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分,假定
省规定:选考科目按考生成绩从高到低排列,按照占总体
、
、
、
分别赋分
分、
分、
分、
分,为了让学生们体验“赋分制”计算成绩的方法,
省某高中高一(
)班(共
人)举行了以此摸底考试(选考科目全考,单料全班排名),知这次摸底考试中的物理成绩(满分
分)频率分布直方图,化学成绩(满分
分)茎叶图如图所示,小明同学在这次考试中物理
分,化学
多分.

(1)采用赋分制后,求小明物理成绩的最后得分;
(2)若小明的化学成绩最后得分为
分,求小明的原始成绩的可能值;
(3)若小明必选物理,其他两科从化学、生物、历史、地理、政治五科中任选,求小明此次考试选考科目包括化学的概率.


















(1)采用赋分制后,求小明物理成绩的最后得分;
(2)若小明的化学成绩最后得分为

(3)若小明必选物理,其他两科从化学、生物、历史、地理、政治五科中任选,求小明此次考试选考科目包括化学的概率.
“绿水青山就是金山银山”,“建设美丽中国”已成为新时代中国特色社会主义生态文明建设的重要内容,某班在一次研学旅行活动中,为了解某苗圃基地的柏树幼苗生长情况,在这些树苗中随机抽取了120株测量高度(单位:
),经统计,树苗的高度均在区间
内,将其按
,
,
,
,
,
分成6组,制成如图所示的频率分布直方图.据当地柏树苗生长规律,高度不低于
的为优质树苗.

(1)求图中
的值;
(2)已知所抽取的这120株树苗来自于
,
两个试验区,部分数据如下列联表:
将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与
,
两个试验区有关系,并说明理由;
(3)通过用分层抽样方法从
试验区被选中的树苗中抽取5株,若从这5株树苗中随机抽取2株,求优质树苗和非优质树苗各有1株的概率.
附:参考公式与参考数据:
其中










(1)求图中

(2)已知所抽取的这120株树苗来自于


| ![]() | ![]() | 合计 |
优质树苗 | | 20 | |
非优质树苗 | 60 | | |
合计 | | | |
将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与


(3)通过用分层抽样方法从

附:参考公式与参考数据:

其中

![]() | 0.010 | 0.005 | 0.001 |
![]() | 6.635 | 7.879 | 10.828 |
“绿水青山就是金山银山”,“建设美丽中国”已成为新时代中国特色社会主义生态文明建设的重要内容,某班在一次研学旅行活动中,为了解某苗圃基地的柏树幼苗生长情况,在这些树苗中随机抽取了120株测量高度(单位:
),经统计,树苗的高度均在区间
内,将其按
,
,
,
,
,
分成6组,制成如图所示的频率分布直方图.据当地柏树苗生长规律,高度不低于
的为优质树苗.

(1)求图中
的值;
(2)已知所抽取的这120株树苗来自于
,
两个试验区,部分数据如列联表:
将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与
,
两个试验区有关系,并说明理由;
(3)用样本估计总体,若从这批树苗中随机抽取4株,其中优质树苗的株数为
,求
的分布列和数学期望
.
附:参考公式与参考数据:
,其中










(1)求图中

(2)已知所抽取的这120株树苗来自于


| ![]() | ![]() | 合计 |
优质树苗 | | 20 | |
非优质树苗 | 60 | | |
合计 | | | |
将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与


(3)用样本估计总体,若从这批树苗中随机抽取4株,其中优质树苗的株数为



附:参考公式与参考数据:


![]() | 0.010 | 0.005 | 0.001 |
![]() | 6.635 | 7.879 | 10.828 |
某药厂选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17),将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,如图是根据实验数据制成的频率分布直方图,已知第一组与第二组共有20人,则第三组中的人数为 _________ .

随着智能手机的发展,各种“APP”(英文单词Application的缩写,一般指手机软件)应运而生.某机构欲对A市居民手机内安装的APP的个数和用途进行调研,在使用智能手机的居民中随机抽取100人,获得了他们手机内安装APP的个数,整理得到如图所示频率分布直方图.

(Ⅰ)求a的值;
(Ⅱ)从被抽取安装APP的个数不低于50的居民中,随机抽取2人进一步调研,求这2人安装APP的个数都低于60的概率;
(Ⅲ)假设同组中的数据用该组区间的右端点值代替,以本次被抽取的居民情况为参考,试估计A市使用智能手机的居民手机内安装APP的平均个数在第几组(只需写出结论).

(Ⅰ)求a的值;
(Ⅱ)从被抽取安装APP的个数不低于50的居民中,随机抽取2人进一步调研,求这2人安装APP的个数都低于60的概率;
(Ⅲ)假设同组中的数据用该组区间的右端点值代替,以本次被抽取的居民情况为参考,试估计A市使用智能手机的居民手机内安装APP的平均个数在第几组(只需写出结论).