- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某地区为了了解本年度数学竞赛成绩情况,从中随机抽取了
个学生的分数作为样本进行统计,按照
,
,
,
,
的分组作出频率分布直方图如图所示,已知得分在
的频数为20,且分数在70分及以上的频数为27.

(1)求样本容量
以及
,
的值;
(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中恰有一人得分在
内的概率.








(1)求样本容量



(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中恰有一人得分在

已知某选手参加比赛的现场7个得分为:88,93,86,94,96,
,90,现将这位选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个得分的平均分为92,则
的值为( )


A.90 | B.94 | C.95 | D.93 |
某电视台举行文艺比赛,并通过网络对比赛进行直播.比赛现场有5名专家评委给每位参赛选手评分,场外观众可以通过网络给每位参赛选手评分.每位选手的最终得分由专家评分和观众评分确定.某选手参与比赛后,现场专家评分情况如表;场外有数万名观众参与评分,将评分按照[7,8),[8,9),[9,10]分组,绘成频率分布直方图如图:

(1)求a的值,并用频率估计概率,估计某场外观众评分不小于9的概率;
(2)从5名专家中随机选取3人,X表示评分不小于9分的人数;从场外观众中随机选取3人,用频率估计概率,Y表示评分不小于9分的人数;试求E(X)与E(Y)的值;
(3)考虑以下两种方案来确定该选手的最终得分:方案一:用所有专家与观众的评分的平均数
作为该选手的最终得分,方案二:分别计算专家评分的平均数
和观众评分的平均数
,用
作为该选手最终得分.请直接写出
与
的大小关系.
专家 | A | B | C | D | E |
评分 | 9.6 | 9.5 | 9.6 | 8.9 | 9.7 |

(1)求a的值,并用频率估计概率,估计某场外观众评分不小于9的概率;
(2)从5名专家中随机选取3人,X表示评分不小于9分的人数;从场外观众中随机选取3人,用频率估计概率,Y表示评分不小于9分的人数;试求E(X)与E(Y)的值;
(3)考虑以下两种方案来确定该选手的最终得分:方案一:用所有专家与观众的评分的平均数






据全球权威票房网站Mojo数据统计,截至8月20日14时,《战狼2》国内累计票房50亿,截至目前,《战狼2》中国市场观影人次达1.4亿,这一数字也创造了全球影史“单一市场观影人次”的新记录,为了解《战狼2》观影人的年龄分布情况,某调查小组随机统计了100个此片的观影人的年龄(他们的年龄都在区间
内),并绘制了如图所示的频率分布直方图,则由图可知,这100人年龄的中位数为( )



A.33 | B.34 | C.35 | D.36 |
某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50名学生组成一个样本,将测试结果按如下方式分成五组:第一组
,第二组
……,第五组
,如图是按上述分组方法得到的频率分布直方图.

(1)请估计学校1800名学生中,成绩属于第四组的人数;
(2)若成绩小于15秒认为良好,求该样本中在这次百米测试中成绩良好的人数;
(3)请根据频率分布直方图,求样本数据的众数、平均数.




(1)请估计学校1800名学生中,成绩属于第四组的人数;
(2)若成绩小于15秒认为良好,求该样本中在这次百米测试中成绩良好的人数;
(3)请根据频率分布直方图,求样本数据的众数、平均数.
响应“文化强国建设”号召,某市把社区图书阅览室建设增列为重要的民生工程.为了解市民阅读需求,随机抽取市民200人做调查,统计数据表明,样本中所有人每天用于阅读的时间(简称阅读用时)都不超过3小时,其频数分布表如下:(用时单位:小时)
(1)用样本估计总体,求该市市民每天阅读用时的平均值;
(2)为引导市民积极参与阅读,有关部门牵头举办市读书经验交流会,从这200人中筛选出男女代表各3名,其中有2名男代表和1名女代表喜欢古典文学.现从这6名代表中任选2名男代表和2名女代表参加交流会,求参加交流会的4名代表中,喜欢古典文学的男代表多于喜欢古典文学的女代表的概率.
用时分组 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 10 | 20 | 50 | 60 | 40 | 20 |
(1)用样本估计总体,求该市市民每天阅读用时的平均值;
(2)为引导市民积极参与阅读,有关部门牵头举办市读书经验交流会,从这200人中筛选出男女代表各3名,其中有2名男代表和1名女代表喜欢古典文学.现从这6名代表中任选2名男代表和2名女代表参加交流会,求参加交流会的4名代表中,喜欢古典文学的男代表多于喜欢古典文学的女代表的概率.
2016年“一带一路”沿线64个国家GDP之和约为12.0万亿美元,占全球GDP的
;人口总数约为32.1亿,占全球总人口的
;对外贸易总额(进口额+出口额)约为71885.6亿美元,占全球贸易总额的
.
2016年“一带一路”沿线国家情况
关于“一带一路”沿线国家2016年状况,能够从上述资料中推出的是( )



2016年“一带一路”沿线国家情况
| 人口(万人) | GDP(亿美元) | 进口额(亿美元) | 出口额(亿美元) |
蒙古 | 301.4 | 116.5 | 38.7 | 45.0 |
东南亚11国 | 63852.5 | 25802.2 | 11267.2 | 11798.6 |
南亚8国 | 174499.0 | 29146.6 | 4724.1 | 3308.5 |
中亚5国 | 6946.7 | 2254.7 | 422.7 | 590.7 |
西亚、北非19国 | 43504.6 | 36467.5 | 9675.5 | 8850.7 |
东欧20国 | 32161.9 | 26352.1 | 9775.5 | 11388.4 |
关于“一带一路”沿线国家2016年状况,能够从上述资料中推出的是( )
A.超过六成人口集中在南亚地区 |
B.东南亚和南亚国家GDP之和占全球的![]() |
C.平均每个南亚国家对外贸易额超过1000亿美元 |
D.平均每个东欧国家的进口额高于平均每个西亚、北非国家的进口额 |
如图1是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到12次的考试成绩依次记为
.如图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是( )



A.9 | B.10 | C.11 | D.12 |
某技术人员在某基地培育了一种植物,一年后,该技术人员从中随机抽取了部分这种植物的高度(单位:厘米)作为样本(样本容量为
)进行统计,绘制了如下频率分布直方图,已知抽取的样本植物高度在
内的植物有8株,在
内的植物有2株.

(Ⅰ)求样本容量
和频率分布直方图中的
,
的值;
(Ⅱ)在选取的样本中,从高度在
内的植物中随机抽取3株,设随机变量
表示所抽取的3株高度在
内的株数,求随机变量
的分布列及数学期望;
(Ⅲ)据市场调研,高度在
内的该植物最受市场追捧.老王准备前往该基地随机购买该植物50株.现有两种购买方案,方案一:按照该植物的不同高度来付费,其中高度在
内的每株10元,其余高度每株5元;方案二:按照该植物的株数来付费,每株6元.请你根据该基地该植物样本的统计分析结果为决策依据,预测老王采取哪种付费方式更便宜?




(Ⅰ)求样本容量



(Ⅱ)在选取的样本中,从高度在




(Ⅲ)据市场调研,高度在


某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为
若低于60分的人数是15人,则该班的学生人数是( )



A.![]() | B.![]() | C.![]() | D.![]() |