某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2015年1月至2017年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()
A.年接待游客量逐年增加
B.各年的月接待游客量高峰期在8月
C.2015年1月至12月月接待游客量的中位数为30万人
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
当前题号:1 | 题型:单选题 | 难度:0.99
下列命题中真命题是(   )
(1)在的二项式展开式中,共有项有理项;
(2)若事件满足,则事件是相互独立事件;
(3)根据最近天某医院新增疑似病例数据,“总体均值为,总体方差为”,可以推测“最近天,该医院每天新增疑似病例不超过人”.
A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)
当前题号:2 | 题型:单选题 | 难度:0.99
有一个容量为60的样本,数据的分组及各组的频数如下图:
数据分组






频数
2
8
10
20
16
4
 
根据样本的频率分布估计,总体的平均数为______.(保留小数点后两位)
当前题号:3 | 题型:填空题 | 难度:0.99
为进一步优化教育质量平台,更好的服务全体师生,七天网络从甲、乙两所学校各随机抽取100名考生的某次“四省八校”数学考试成绩进行分析,分别绘制的频率分布直方图如图所示.

为了更好的测评各个学校数学学科的教学质量,该公司依据每一位考生的数学测试分数将其划分为“”三个不同的等级,并按照不同的等级,设置相应的对学校数学学科教学质量贡献的积分,如下表所示.
测试分数的范围
分数对应的等级
贡献的积分


1分


2分


3分
 
(1)用样本的频率分布估计总体的频率分布,若将甲学校考生的数学测试等级划分为“等”和“非等”两种,利用分层抽样抽取10名考生,再从这10人随机抽取3人,求3人中至少1人数学测试为“等”的概率;
(2)视频率分布直方图中的频率为概率,用样本估计总体,若从乙学校全体考生中随机抽取3人,记3人中数学测试等级为“等”的人数为,求的分布列和数学期望
(3)根据考生的数学测试分数对学校数学学科教学质量贡献的积分规则,分别记甲乙两所学校数学学科质量的人均积分为,用样本估计总体,求的估计值,并以此分析,你认为哪所学校本次数学教学质量更加出色?
当前题号:4 | 题型:解答题 | 难度:0.99
春节来临之际,某超市为了确定此次春节年货的进货方案,统计去年春节前后50天年货的日销售量(单位:kg),得到如图所示的频率分布直方图.

(1)求这50天超市日销售量的平均数;(视频率为概率,以各组区间的中点值代表该组的值)
(2)先从日销售在内的天数中,按分层抽样随机抽取4天进行比较研究,再从中选2天,求这2天的日销售量都在内的概率.
当前题号:5 | 题型:解答题 | 难度:0.99
2019年1月1日新修订的个税法正式实施,规定:公民全月工资、薪金所得不超过5000元的部分不必纳税,超过5000元的部分为全月应纳税所得额.此项税款按下表分段累计计算(预扣):
全月应缴纳所得额
税率
不超过3000元的部分

超过3000元至12000元的部分

超过12000元至25000元的部分

 
国家在实施新个税时,考虑到纳税人的实际情况,实施了《个人所得税税前专项附加扣税暂行办法》,具体如下表:
项目
每月税前抵扣金额(元)
说明
子女教育
1000
一年按12月计算,可扣12000元
继续教育
400
一年可扣除4800元,若是进行技能职业教育或者专业技术职业资格教育一年可扣除3600元
大病医疗
5000
一年最高抵扣金额为60000元
住房贷款利息
1000
一年可扣除12000元,若夫妻双方在同一城市工作,可以选择一方来扣除
住房租金
1500/1000/800
扣除金额需要根据城市而定
赡养老人
2000
一年可扣除24000元,若不是独生子女,子女平均扣除.赡养老人年龄需要在60周岁及以上
 
老李本人为独生子女,家里有70岁的老人需要赡养,有一个女儿正读高三,他每月还需缴纳住房贷款2734元.若2019年11月老李工资,薪金所得为20000元,按照《个人所得税税前专项附加扣税暂行办法》,则老李应缴纳税款(预扣)为______元.
当前题号:6 | 题型:填空题 | 难度:0.99
如图所示的茎叶图记录了甲、乙两人进入高三后5次数学模拟考试的成绩(百分制),现对这两人的成绩有如下评价:①甲的平均成绩高于乙的平均成绩;②乙的成绩的极差为4;③甲的成绩的众数为91;④甲的成绩的标准差大于乙的成绩的标准差.以上评价中正确的有______(填序号).
当前题号:7 | 题型:填空题 | 难度:0.99
40名学生某次数学考试成绩(单位:分)的频率分布直方图如下:

(1)求频率分布直方图中的值;
(2)根据频率分布直方图求出样本数据的中位数(保留小数点后两位数字)和众数;
(3)从成绩在的学生中任选3人,求这3人的成绩都在中的概率.
当前题号:8 | 题型:解答题 | 难度:0.99
已知数据的平均数为3,标准差为4,则数据的平均数和方差分别为______.
当前题号:9 | 题型:填空题 | 难度:0.99
设样本数据的均值和方差分别为1和4,若为非零常数,,则的均值和方差分别为( )
A.B.C.D.
当前题号:10 | 题型:单选题 | 难度:0.99